HOMEWORK 01

PSTAT 120B: Mathematical Statistics, |
Summer Session A, 2024 with Instructor: Ethan P. Marzban

1. (PSTAT 120A Review) For a random variable X and constant a and b, show that
Var(aX + b) = a*Var(X)

Solution:

Var(aX +b) = E[(aX + b)?] — (E[aX + b])?
= Ela’X? + 2abX + %] — (aE[X] + b)?
= a®B[X?] + 20bBEXT + ¥ — a’(B[X])” — 20bBEXT — ¥
= o {E[X?] - (E[X])?}
= a*Var(X) [ |

2. (Modified from #5.36) Let Y7 and Y, denote the proportions of time (out of one workday) during which
employees | and II, respectively, perform their assigned tasks. The joint relative frequency behavior of
Y7 and Y5 is modeled by the density function
riva(y1,92) = (1 +y2) - Ljo<y, <1, 0<y<1)
(@) Verify that this is a valid joint density function.

Solution: Recall that a function need only satisfy two conditions in order to be a valid den-
sity: nonnegativity, and integrating to unity. Nonnegativity is fairly trivial; for any y; € [0, 1]
and y2 € [0, 1] we have that both y; and y» are nonnegative, and hence their sum will also be
nonnegative- thus, fy, v, (y1,y2) > 0 for every (y1,42) € R.

To check integration to unity, we compute

1 1
ﬂ vy (y1,y2) dA = J f (y1 + y2) dy1 dyo
RQ

y1=1

I
—J [2y%+y1yz] dyo
0 y1=0

Hence, we can conclude that fy; v, (y1,y2) is a valid joint density function.
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(b) Find the marginal density functions for Y7 and Y5.

Solution:

fY1 (yl) = J]R fY1,Y2 (y17y2) dyQ

= J (Y1 +v2) - Ljo<yi <1y - Ljo<y.<1y d¥2

—00

1
= Lio<y, <1} - L (y1 +y2) dy2

) y2=1
= Tjo<y, <1} - {9192 + 23/2]
y2=0

1
= (2 + yl) o<y <1y
Jya(y2) = L{ i ve (Y1, y2) dya

= J (Y1 +92) - Ljo<y <1y - Ljo<y,<1y A

—00

1
= Lio<y,<1} - Jo (y1 +y2) dyr

y1=1

1
= Lio<y,<1} - {2‘% + ylyz] ,
y1=

1
= (2 +y2> Lo<yo<1y

(We could have also surmised the density of fy, (y2) through symmetry.)

(c) Are Y7 and Y5 independent? Why or why not? Be careful about your justification!

Solution: Y7 L Y5 only if their joint density factors as a product of their marginals. From our
answers to part (b) above, we find

1 1
i) - fra(ye) = (2 +y1> o<y <1y (2 +y2> Lio<y,<1y

1 1 1
=7 toutovztuye) Locy<i, o<
4723
# (1 +y2) - Ljo<y <1, 0<ye<1) = a2 (y1,92)

So, since fy, v, (Y1, y2) # fvi (Y1) - fv,(y2), we have that Y7 and Y3 are not independent.

(d) Find P(Y; > 1/2| Ya > 1/2).
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Solution: By the definition of conditional probability,

P({Y1 >1/2} n{Yy > 1/2}

P(Y; >1/2| Y, >1/2) = P(Ys > 1/2)

The numerator can be computed by double-integrating the joint density, and the denominator
can be found by integrating the marginal density of Y5 that we derived in part (b) above.

1 1
P(YV; > 1/2, Yzzuz):f J (11 + ) dy1 dys
12 J1/2

y1=1

1
1
= f [2y% + 3/13/2} dy>
1/2 y1:1/2

1+ 1 1 d
5 Y2 3 2y2 Y2
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Hence, putting everything together,

P((¥i > 1/2}n (Y2 > 1/2) _3/8 _ 3

P(Yi>1/2| Yy > 1/2) = AT -5 =F

(e) If employee Il spends exactly 50% of the day working on assigned duties, find the probability that
employee | spends more than 75% of the day working on similar duties.

Solution: This part is asking us to compute P(Y; > 3/4 | Yo = 1/2), which requires us
to first find the conditional density fy, |y, (y1 | y2) [since the event we are conditioning on,
{Y5 = 1/2}, has zero probability]. We do so by using the definition of conditional densities:

iy (w1 1 y2) = Jyz (y2)
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(1) - Loy, <1y - Lp<gp=iy
(% +Z/2) -1 <75<1}
Y1ty

~ Ty, o<y <1y
This tells us that, plugging in yo = 1/2,
y1+1/2 1
Fraws i 11/2) = == Tpocy<y = | 5 T 91 ) - Lpo<y<ny
2 T2
and so
o]
P(Y1>3/4|Y2=1/2) = ) Fyiyva(y1 1 1/2) dyn
3/4
L
= 5 Tu dy1
3/4
1 ) y1=1
y1=3/4

which is equivalent to 34.375%.

3. (Modified From #5.157) A forester studying diseased pine trees models the number of diseased trees

per acre, Y, as a Poisson random variable with mean A. However, A\ changes from area to area, and
its random behavior is modeled by a gamma distribution. That is, for some integer « and a positive

constant 8 > 0,
1

f()‘) - F(OZ)B&
Find the unconditional probability distribution of Y. Because « is assumed to be an integer, you should
be able to recognize this distribution by name - include any/all relevant parameter(s)! Hint: When in-
tegrating/summing, try to multiply and divide by constants to get a density function inside the inte-
gral/sum. This will then avoid you having to perform any direct integration/summation!

)\a_16_>\/6 . 1{)\20}

Solution: Let A denote the random variable corresponding to the rate of diseased trees. From
the problem statement,

(Y | A= X) ~ Pois())
A ~ Gamma(a, )

Hence, we have access to py | (y | A) and fa()), and we seek py (y) [note that Y will be discrete].
The trick is to use the continuous-case formula from slide 31 of the Topic01 Slides (we use the
continuous-case since the random variable we are conditioning on, A, is continuous):

py(y) = meM fa(A) dA
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Y 1
_ A A a—1,-MB . q
fRe y Tapa” © 020y dA

L e )
_ . . (a+y)—1 | B
yl T(a)pe fo A ¢ a

There are a couple of ways to solve this particular integral: one is to make a u—substitution and
then manipulate terms to turn the integral into a Gamma function, and the other is to multiply and
divide by appropriate constants to transform the integrand into the density of a Gamma distribu-
tion. I'll start by demonstrating the latter:

= F(al)ﬂa 'LOO A ek/ ] d
a+y
y"IKaFiL'!(;i%)] 'JQD 1 'Aw&y%ﬂ-eA//[@jé)}dA
| D )

MNa+y) -

The integrand is now the density of a Gamma(a + v, 1/(1 + 1//3)) distribution. Since we are
integrating this density over its entire support, the integral must be unity:

a+y
I(a+y) !
o
S VO
ity 1 [ 1 |7
AT B | (5

1 T(a+y) 1 B+y

yl T(a) p¥ (B+1)oty
1 T(e+y)  p

Y O R GRSV

Though this is a perfectly valid form for the unconditional p.m.f. of Y, we are asked to identify this
distribution by name. To do so, we'll simplify our result a bit, by leveraging the fact that both «
and y are assumed to be integers:

1 TI(a+y) BY
W= T ) B e
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which is valid for y € {0, 1,2, - - }. Staring at this, we see this is the p.m.f. of a Negative Binomial
distribution on {0, 1, 2, - - - }; specifically,

1
Y ~ NegBin | oo, ——
° ( ﬁ+1>

Here is an alternate way you can evaluate the integral for this part, using u—substitutions. We

start with
1 1 o0 1 =)\ 1+l)
- . ) A\ety)—1 ( 5) d\
P = g, ‘
1 1 o 1 (Bt
— . ) Alety)—1 (ﬁ >d)\
Y T(a)pe Jo ‘

The integral closely resembles the definition of the Gamma function:
o0
I(r):= f t et dt
0

However, it is not exactly a Gamma integral since the exponent is not just the variable of integra-
tion - it involves a constant times the variable of integration. But that’'s not a problem - we can
simply make a u—substitution and define the new variable of integration to be precisely whatever
is in the exponent! That is:

Additionally,

and so, substituting into our integral, we have:

o0 (8L
(o) = e [ ae e () o)
: 0

R f°° Kﬁ) } L B
y! T(a)B> Jo B+1 B

_ 1 1 ﬁ ot > (at+y)—1  _—Au
‘y!'rmma'(ml) L e

The integral is now exactly the definition of I'(« + y), meaning

_ 1 1 p ot > (a+y)—1  _—du
pY(y)‘y!'F<a>6a'<6+1> e

B 1 1 ﬁ a+y
- (7))

which is precisely what we obtained above, using the other method.
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PLEASE NOTE: As was stated in a couple of Canvas Assignments, you were not asked to submit Prob-
lem 4 with HWO01. However, | am providing solutions to this problem as its material (specifically, con-
ditional expectations and the Law of Iterated Expectations) is fair game for Quiz01. Part (b) [which
utilizes the Law of Total Variance] is out-of-scope for Quiz01.

4. Let N be a random variable whose support consists only of natural numbers, and let {Y;};>¢ denote
a sequence of identically distributed (but not necessarily independent) random variables with mean p
and variance o2. Furthermore, define

N
SN = Z Y
i=1

Notice, crucially, that the sum on the RHS above contains a random number of terms.

(a) Prove Wald's Theorem, which states that E[Sy] = E[N] - .

Solution: The trick is to appeal to the Law of Iterated Expectations. First:

N n
> Yi|N=n > Y
1=1 =1

Hence, by definition, E[Sy | N] = Ny and, by the Law of Iterated Expectations,

E[Sy | N =n]:=E -

= E[Y)] =nu
=1

E[Sy] = E[E[Sx | N)| = E[Nu] = E[N] -

which is precisely the desired result.

(b) Derive a formula for Var(Sy). If you need to make an additional assumption, clearly state which
assumption(s) need to be made.

Solution: Here, we need to appeal to the Law of Total Variance:
Var(Sy) = E[Var(Sy | N)] + Var(E[Sy | N])

We know that E[Sy | N] = Nu (as was derived in the previous part). To compute Var(Sy |
N), we write

N n
Var(Sy | N =n) = Var (ZYZ | N = n> = Var <ZY;>
=1 1=1

at this point, we would like to pull the variance through the sum, However, we can only do so
if we assume independence; hence, let’s assume independence. Then

Var(Sy | N =n) = Var (Z K) = ZVar(Yi) =no? = Var(Sy | N) = No?
i=1 i=1

Hence, putting everything together:

Var(Sy) = E[Var(Sy | N)] + Var(E[Sy | N])
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=E [No?] + Var (Np)
= ¢ - E[N] + p?Var(N)

Again, this is only valid if we assume the Y to be i.i.d.; otherwise, this formula does not hold.
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