
HOMEWORK 01

PSTAT 120B:Mathematical Statistics, I

Summer Session A, 2024with Instructor: Ethan P. Marzban

1. (PSTAT 120A Review) For a random variableX and constant a and b, show that

Var(aX + b) = a2Var(X)

Solution:

Var(aX + b) = E[(aX + b)2]− (E[aX + b])2

= E[a2X2 + 2abX + b2]− (aE[X] + b)2

= a2E[X2] +�����2abE[X] +��b
2 − a2(E[X])2 −�����2abE[X] −��b

2

= a2
{
E[X2]− (E[X])2

}
= a2Var(X) �

2. (Modified from#5.36) LetY1 andY2 denote theproportions of time (out of oneworkday) duringwhich

employees I and II, respectively, perform their assigned tasks. The joint relative frequency behavior of

Y1 and Y2 is modeled by the density function

fY1,Y2(y1, y2) = (y1 + y2) · 1{0≤y1≤1, 0≤y2≤1}

(a) Verify that this is a valid joint density function.

Solution: Recall that a function need only satisfy two conditions in order to be a valid den-

sity: nonnegativity, and integrating to unity. Nonnegativity is fairly trivial; for any y1 ∈ [0, 1]
and y2 ∈ [0, 1]we have that both y1 and y2 are nonnegative, and hence their sum will also be

nonnegative- thus, fY1,Y2(y1, y2) ≥ 0 for every (y1, y2) ∈ R.

To check integration to unity, we compute

żż

R2

fY1,Y2(y1, y2) dA =

ż 1

0

ż 1

0
(y1 + y2) dy1 dy2

=

ż 1

0

[
1

2
y21 + y1y2

]y1=1

y1=0

dy2

=

ż 1

0

(
1

2
+ y2

)
dy2

=

[
1

2
y2 +

1

2
y22

]y2=1

y2=0

=
1

2
+

1

2
= 1X

Hence, we can conclude that fY1,Y2(y1, y2) is a valid joint density function.
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(b) Find the marginal density functions for Y1 and Y2.

Solution:

fY1(y1) =

ż

R

fY1,Y2(y1, y2) dy2

=

ż ∞

−∞
(y1 + y2) · 1{0≤y1≤1} · 1{0≤y2≤1} dy2

= 1{0≤y1≤1} ·
ż 1

0
(y1 + y2) dy2

= 1{0≤y1≤1} ·
[
y1y2 +

1

2
y22

]y2=1

y2=0

=

(
1

2
+ y1

)
· 1{0≤y1≤1}

fY2(y2) =

ż

R

fY1,Y2(y1, y2) dy1

=

ż ∞

−∞
(y1 + y2) · 1{0≤y1≤1} · 1{0≤y2≤1} dy1

= 1{0≤y2≤1} ·
ż 1

0
(y1 + y2) dy1

= 1{0≤y2≤1} ·
[
1

2
y21 + y1y2

]y1=1

y1=0

=

(
1

2
+ y2

)
· 1{0≤y2≤1}

(We could have also surmised the density of fY2(y2) through symmetry.)

(c) Are Y1 and Y2 independent? Why or why not? Be careful about your justification!

Solution: Y1 ⊥ Y2 only if their joint density factors as a product of their marginals. From our

answers to part (b) above, we find

fY1(y1) · fY2(y2) =

(
1

2
+ y1

)
· 1{0≤y1≤1} ·

(
1

2
+ y2

)
· 1{0≤y2≤1}

=

(
1

4
+

1

2
y1 +

1

2
y2 + y1y2

)
· 1{0≤y1≤1, 0≤y2≤1}

6= (y1 + y2) · 1{0≤y1≤1, 0≤y2≤1} = fY1,Y2(y1, y2)

So, since fY1,Y2(y1, y2) 6= fY1(y1) · fY2(y2), we have that Y1 and Y2 are not independent.

(d) FindP(Y1 ≥ 1/2 | Y2 ≥ 1/2).
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Solution: By the definition of conditional probability,

P(Y1 ≥ 1/2 | Y2 ≥ 1/2) =
P({Y1 ≥ 1/2} ∩ {Y2 ≥ 1/2}

P(Y2 ≥ 1/2)

Thenumerator can be computedby double-integrating the joint density, and the denominator

can be found by integrating the marginal density of Y2 that we derived in part (b) above.

P(Y1 ≥ 1/2, Y2 ≥ 1/2) =

ż 1

1/2

ż 1

1/2
(y1 + y2) dy1 dy2

=

ż 1

1/2

[
1

2
y21 + y1y2

]y1=1

y1=1/2

dy2

=

ż 1

1/2

(
1

2
+ y2 −

1

8
− 1

2
y2

)
dy2

=

ż 1

1/2

(
3

8
+

1

2
y2

)
dy2

=

[
3

8
y2 +

1

4
y22

]y2=1

y2=1/2

=
3

8
+

1

4
− 3

16
− 1

16
=

3

8

P(Y2 ≥ 1/2) =

ż ∞

1/2
fY2(y2) dy2

=

ż 1

1/2

(
1

2
+ y2

)
dy2

=

[
1

2
y2 +

1

2
y22

]y2=1

y2=1/2

=
1

2
+

1

2
− 1

4
− 1

8
=

5

8

Hence, putting everything together,

P(Y1 ≥ 1/2 | Y2 ≥ 1/2) =
P({Y1 ≥ 1/2} ∩ {Y2 ≥ 1/2}

P(Y2 ≥ 1/2)
=

3/8

5/8
=

3

5

(e) If employee II spends exactly 50% of the day working on assigned duties, find the probability that

employee I spends more than 75% of the day working on similar duties.

Solution: This part is asking us to compute P(Y1 ≥ 3/4 | Y2 = 1/2), which requires us

to first find the conditional density fY1|Y1
(y1 | y2) [since the event we are conditioning on,

{Y2 = 1/2}, has zero probability]. We do so by using the definition of conditional densities:

fY1|Y2
(y1 | y2) =

fY1,Y2(y1, y2)

fY2(y2)
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=
(y1 + y2) · 1{0≤y1≤1} ·�����1{0≤y2≤1}(

1
2 + y2

)
·�����1{0≤y2≤1}

=
y1 + y2
1
2 + y2

· 1{0≤y1≤1}

This tells us that, plugging in y2 = 1/2,

fY1|Y2
(y1 | 1/2) =

y1 + 1/2
1
2 + 1

2

· 1{0≤y1≤1} =

(
1

2
+ y1

)
· 1{0≤y1≤1}

and so

P(Y1 ≥ 3/4 | Y2 = 1/2) =

ż ∞

3/4
fY1|Y2

(y1 | 1/2) dy1

=

ż 1

3/4

(
1

2
+ y1

)
dy1

=

[
1

2
y1 +

1

2
y21

]y1=1

y1=3/4

=
1

2
+

1

2
− 3

8
− 9

32
=

11

32

which is equivalent to 34.375%.

3. (Modified from #5.157) A forester studying diseased pine trees models the number of diseased trees

per acre, Y , as a Poisson random variable with mean λ. However, λ changes from area to area, and

its random behavior is modeled by a gamma distribution. That is, for some integer α and a positive

constant β > 0,

f(λ) =
1

Γ(α)βα
λα−1e−λ/β · 1{λ≥0}

Find the unconditional probability distribution ofY . Becauseα is assumed to be an integer, you should

be able to recognize this distribution by name - include any/all relevant parameter(s)! Hint: When in-

tegrating/summing, try to multiply and divide by constants to get a density function inside the inte-

gral/sum. This will then avoid you having to perform any direct integration/summation!

Solution: Let Λ denote the random variable corresponding to the rate of diseased trees. From

the problem statement,

(Y | Λ = λ) ∼ Pois(λ)

Λ ∼ Gamma(α, β)

Hence, we have access to pY |Λ(y | λ) and fΛ(λ), and we seek pY (y) [note that Y will be discrete].

The trick is to use the continuous-case formula from slide 31 of the Topic01 Slides (we use the

continuous-case since the random variable we are conditioning on,Λ, is continuous):

pY (y) =

ż

R

pY |Λ(λ) · fΛ(λ) dλ
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=

ż

R

e−λ · λ
y

y!
· 1

Γ(α)βα
λα−1e−λ/β · 1{λ≥0} dλ

=
1

y!
· 1

Γ(α)βα
·
ż ∞

0
λ(α+y)−1 · e−λ

(
1+ 1

β

)
dλ

There are a couple of ways to solve this particular integral: one is to make a u−substitution and

thenmanipulate terms to turn the integral into a Gamma function, and the other is tomultiply and

divide by appropriate constants to transform the integrand into the density of a Gamma distribu-

tion. I’ll start by demonstrating the latter:

pY (y) =
1

y!
· 1

Γ(α)βα
·
ż ∞

0
λ(α+y)−1 · e

−λ

/[
1(

1+ 1
β

)
]
dλ

=
1

y!
·
Γ(α+ y) ·

[
1(

1+ 1
β

)
]α+y

Γ(α) · βα
·
ż ∞

0

1

Γ(α+ y) ·

[
1(

1+ 1
β

)
]α+y · λ(α+y)−1 · e

−λ

/[
1(

1+ 1
β

)
]
dλ

The integrand is now the density of a Gamma(α + y , 1/(1 + 1/β)) distribution. Since we are

integrating this density over its entire support, the integral must be unity:

pY (y) =
1

y!
·
Γ(α+ y) ·

[
1(

1+ 1
β

)
]α+y

Γ(α) · βα

=
1

y!
· Γ(α+ y)

Γ(α)
· 1

βα
·

 1(
β+1
β

)
α+y

=
1

y!
· Γ(α+ y)

Γ(α)
· 1

��β
α · β�α+y

(β + 1)α+y

=
1

y!
· Γ(α+ y)

Γ(α)
· βy

(β + 1)α+y

Though this is a perfectly valid form for the unconditional p.m.f. of Y , we are asked to identify this

distribution by name. To do so, we’ll simplify our result a bit, by leveraging the fact that both α
and y are assumed to be integers:

pY (y) =
1

y!
· Γ(α+ y)

Γ(α)
· βy

(β + 1)α+y

=
(α+ y − 1)!

y! · (α− 1)!
·
(

1

β + 1

)α

·
(

β

β + 1

)y

=

(
α+ y − 1

y

)
·
(

1

β + 1

)α

·
(
1− 1

β + 1

)y
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which is valid for y ∈ {0, 1, 2, · · · }. Staring at this, we see this is the p.m.f. of a Negative Binomial

distribution on {0, 1, 2, · · · }; specifically,

Y ∼ NegBin

(
α ,

1

β + 1

)
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Here is an alternate way you can evaluate the integral for this part, using u−substitutions. We

start with

pY (y) =
1

y!
· 1

Γ(α)βα
·
ż ∞

0
λ(α+y)−1e

−λ
(
1+ 1

β

)
dλ

=
1

y!
· 1

Γ(α)βα
·
ż ∞

0
λ(α+y)−1e

−λ
(

β+1
β

)
dλ

The integral closely resembles the definition of the Gamma function:

Γ(r) :=

ż ∞

0
tr−1e−t dt

However, it is not exactly a Gamma integral since the exponent is not just the variable of integra-

tion - it involves a constant times the variable of integration. But that’s not a problem - we can

simply make a u−substitution and define the new variable of integration to be precisely whatever

is in the exponent! That is:

u = λ

(
β

β + 1

)
=⇒ du =

β

β + 1
dλ =⇒ dλ =

β + 1

β
du

Additionally,

λ =

(
β

β + 1

)
u

and so, substituting into our integral, we have:

pY (y) =
1

y!
· 1

Γ(α)βα
·
ż ∞

0
λ(α+y)−1e

−λ
(

β+1
β

)
dλ

=
1

y!
· 1

Γ(α)βα
·
ż ∞

0

[(
β

β + 1

)
u

](α+y)−1

e−u · β + 1

β
du

=
1

y!
· 1

Γ(α)βα
·
(

β

β + 1

)α+y

·
ż ∞

0
u(α+y)−1 · e−λu du

The integral is now exactly the definition of Γ(α+ y), meaning

pY (y) =
1

y!
· 1

Γ(α)βα
·
(

β

β + 1

)α+y

·
ż ∞

0
u(α+y)−1 · e−λu du

=
1

y!
· 1

Γ(α)βα
·
(

β

β + 1

)α+y

· Γ(α+ y)

which is precisely what we obtained above, using the other method.
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PLEASE NOTE: As was stated in a couple of Canvas Assignments, you were not asked to submit Prob-

lem 4 with HW01. However, I am providing solutions to this problem as its material (specifically, con-

ditional expectations and the Law of Iterated Expectations) is fair game for Quiz01. Part (b) [which

utilizes the Law of Total Variance] is out-of-scope for Quiz01.

4. LetN be a random variable whose support consists only of natural numbers, and let {Yi}i≥0 denote

a sequence of identically distributed (but not necessarily independent) random variables with mean µ
and variance σ2. Furthermore, define

SN :=

N∑
i=1

Yi

Notice, crucially, that the sum on the RHS above contains a random number of terms.

(a) ProveWald’s Theorem, which states thatE[SN ] = E[N ] · µ.

Solution: The trick is to appeal to the Law of Iterated Expectations. First:

E[SN | N = n] := E

[
N∑
i=1

Yi | N = n

]
= E

[
n∑

i=1

Yi

]
=

n∑
i=1

E[Yi] = nµ

Hence, by definition,E[SN | N ] = Nµ and, by the Law of Iterated Expectations,

E[SN ] = E[E[SN | N ]] = E[Nµ] = E[N ] · µ

which is precisely the desired result.

(b) Derive a formula for Var(SN ). If you need to make an additional assumption, clearly state which

assumption(s) need to be made.

Solution: Here, we need to appeal to the Law of Total Variance:

Var(SN ) = E[Var(SN | N)] + Var(E[SN | N ])

We know that E[SN | N ] = Nµ (as was derived in the previous part). To compute Var(SN |
N), we write

Var(SN | N = n) = Var

(
N∑
i=1

Yi | N = n

)
= Var

(
n∑

i=1

Yi

)

at this point, we would like to pull the variance through the sum, However, we can only do so

if we assume independence; hence, let’s assume independence. Then

Var(SN | N = n) = Var

(
n∑

i=1

Yi

)
=

n∑
i=1

Var(Yi) = nσ2 =⇒ Var(SN | N) = Nσ2

Hence, putting everything together:

Var(SN ) = E[Var(SN | N)] + Var(E[SN | N ])
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= E
[
Nσ2

]
+ Var (Nµ)

= σ2 · E[N ] + µ2Var(N)

Again, this is only valid if we assume the Yi to be i.i.d.; otherwise, this formula does not hold.
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