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Example

Example
Suppose I roll a fair six-sided die. Then, whatever number the die lands
on, I flip that many fair coins. Let X denote the number of heads. What is
the PMF (probability mass function) of X?

• Now, X sounds binomial. But, there’s a (not-so slight) problem... Can
anyone tell me what that problem is? That’s right; the binomial
distribution requires a fixed number of Bernoulli trials.

• In other words, if the number of coins I tossed remained fixed across
repetitions of this experiment, then X would follow a Binomial distribution.
But, because the number of coins I toss itself potentially changes across
repetitions, we can no longer classify X as being binomially distributed.
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Notation

• Let’s start off (as we should with any problem) by defining some
notation.

• Specifically, it seems like I need to keep track of two things: the result
of the die roll, and the number of heads in the resulting tosses of the
coin.

• As such, let’s assign a random variable to each of these quantities:

N := result of the die roll
X := number of heads among the coin tosses
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Assumptions

• From the problem statement, it’s safe to assume

N ∼ DiscUnif{1, 2, 3, 4, 5, 6}

that is, that N follows the discrete uniform distribution on the set
{1, 2, · · · , 6}.

• Now, to reiterate what we said at the beginning of this discussion, it
is NOT correct to simply say that X is binomially distributed!

• But, that doesn’t mean we can’t get at its PMF directly.
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Example
• For example, suppose I want to compute P(X = 2); i.e. say we wanted

to compute the probability of observing exactly 2 heads.
• Again, the issue is that we don’t know how many coins we tossed!
• If we knew how many coins we tossed - say, for example, 6 - then

we’d be in business! Specifically, the probability of observing 2 heads
among six tosses of a fair coin is easily computed using the Binomial
PMF:

(6
2
)
(1/2)6.

• In slightly more formal language - specifically, the language of
conditional probabilities, what we have just shown is that

P(X = 2 | N = 6) =
(

6
2

)(
1
2

)6
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Example (cont’d)

• Let’s get a bit more practice with understanding our notation! What
is, say, P(X = 2 | N = 5)?

• Well, in words, this is asking us to compute the probability of
observing 2 heads among 5 tosses of a fair coin.

• We can again use the Binomial formula:

P(X = 2 | N = 5) =
(

5
2

)(
1
2

)5
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Example (cont’d)

• Generalizing a bit, let’s see if we can find an expression for
P(X = 2 | N = n), where n is an arbitrary integer in the set
{1, 2, · · · , 6}.

• Again, in words this is asking us to compute the probability of
observing 2 heads among n tosses of a fair coin.

• Once again, we use the Binomial PMF:

P(X = 2 | N = n) =
(

n
2

)(
1
2

)n
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Example (cont’d)
• Generalizing one step further:

P(X = x | N = n) =
(

n
x

)(
1
2

)n

where x ∈ {1, 2, · · · ,n} and n ∈ {1, 2, · · · , 6}.
• BTW, can anyone tell me what happens if x > n? Think both in terms of

intuition, as well as the mathematical formula above!

• Also, don’t forget:

P(N = n) = 1
6 , if n ∈ {1, 2, · · · , 6}
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Clicker Question!

Clicker Question 1

Based on the work we’ve done so far, which PSTAT 120A topic do
you think will help us complete the calculation for P(X = x)?

(A) The Complement Rule
(B) The Inclusion-Exclusion Principle (aka the Addition Rule)
(C) The Law of Total Probability
(D) The Central Limit Theorem
(E) None of the above
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Example (cont’d)
• So, once the dust settles, we have

P(X = x) = 1
6

6∑
n=1

(
n
x

)(
1
2

)n

, for x ∈ {0, 1, · · · , 6}

0.0

0.1

0.2

0.3

0 2 4 6
x

P
(X

 =
 x

)

PMF of X
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Recap
• So, what did we learn?
• Well, I hope one thing became clear: after conditioning on the result

of the die roll, our considerations for the number of heads became
much simpler!

• In a way, it’s tempting to write

(X | N = n) ∼ Bin(n, 1/2)

to indicate the fact that, if we knew the die landed on n, then X
becomes binomially distributed.

• Indeed, such notation is proper - well, it will be after we discuss its
meaning more carefully!
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Conditional Distributions
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Conditional Distributions

• Thinking back to our PSTAT 120A days (as we will often do in this
class), recall the notion of a joint probability density/mass function.

• Essentially, a joint PDF/PMF is a way to jointly specify/quantify the
distribution of two random variables that are potentially related in
some way.

• Let’s consider (temporarily) the discrete and continuous cases
separately.
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Joint PMF

• Consider two random variables X and Y, both of which are discrete.
• Then the joint PMF of X and Y, notated pX,Y(x, y) is defined as

pX,Y(x, y) := P(X = x, Y = y)

• For example, letting X and N be defined as they were in our initial die-and-coin
example, then pX,N(x,n) is the probability that we observed x heads and the
die landed on n.

• What happens if we divide both sides of our definition for pX,Y(x, y) by
pY(y) := P(Y = y)?
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Leadup
• Well, first things first - we need to make sure we’re not dividing by

zero! So, let’s assume that y is such that P(Y = y) ̸= 0.
• Then, we find that

pX,Y(x, y)
pY(y)

=
P(X = x, Y = y)
P(Y = y)

• The RHS should look familiar! Specifically, if we let A := {X = x} and
B := {Y = y}, then the RHS is simply

P(A ∩ B)
P(B)
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Leadup

• Indeed, this is just the definition of P(A | B)!
• So,

pX,Y(x, y)
pY(y)

= P(X = x | Y = y)

• We can use the shorthand pX|Y(x | y) to denote the RHS. That is, we
define

pX|Y(x | y) := pX,Y(x, y)
pY(y)

and call this the conditional PMF of X given Y.
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Leadup
• There are a lot of variables flying around, so maybe it’ll be helpful to

connect things with our initial die-and-coin example.
• I previously argued that

P(X = x | N = n) =
(

n
x

)(
1
2

)n

based on the setup of the problem.
• Indeed, this is just the conditional PMF of X given N = n:

pX|N(x | n) =
(

n
x

)(
1
2

)n
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Conditional PMF
• Okay, let’s make this a bit more formal.

Definition (Conditional PMF)

Given a pair of bivariate random variables (X, Y), we define the
conditional PMF of X given Y = y to be

pX|Y(x | y) := pX,Y(x, y)
pY(y)

= P(X = x | Y = y)

provided that y is such that pY(y) ̸= 0. If pY(y) = 0, then pX|Y(x | y)
is undefined.
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Some Notes

• Though pX|Y(x | y) does involve both x and y, we typically view it as a
function of x alone.

• I’d like to also stress the fact that pX|Y(x | y) is undefined whenever
pY(y) = 0. It’s not 0, or ∞ - it’s just undefined.

Theorem

For any fixed value of y (such that all quantities are defined),
pX|Y(x | y) is a valid PMF.
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Proof.
• Recall that to verify a given function is a valid PMF, we need to

establish two things: nonnegativity, and summation to unity.
• For nonnegativity, it suffices to note that pX|Y(x | y) := P(X = x | Y = y)

is indeed a probability, and is hence always between 0 and 1 (and,
therefore, nonnegative).

• For summation to unity:∑
x

pX|Y(x | y) =
∑

x

pX,Y(x, y)
pY(y)

[Definition of pX|Y(x | y)]

=
1

pY(y)
∑

x
pX,Y(x, y) [Algebra]

=
1

���pY(y)
·���pY(y) = 1 [Joint PMF to Marginal PMF]

Topic 01 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 20/54



Joint PDF

• Alright, let’s talk about the continuous case!
• That is, consider a pair of bivariate random variables (X, Y) that are

both continuous. Then, information about X and Y is jointly specified
through the joint PDF

fX,Y(x, y)
• Now, unlike the discrete case, recall that the values of fX,Y(x, y) do not

represent probabilities - rather, volumes underneath fX,Y(x, y)
represent probabilities.
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Joint PDF
• Nevertheless, motivated by our considerations in the discrete case,

we can still posit the following definition:

Definition (Conditional PDF)

Given a pair of bivariate random variables (X, Y), we define the
conditional PDF of X given Y = y to be

fX|Y(x | y) := fX,Y(x, y)
fY(y)

provided that y is such that fY(y) ̸= 0. If fY(y) = 0, then fX|Y(x | y)
is undefined.
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Theorem

Theorem

For any fixed value of y (such that all quantities are defined),
fX|Y(x | y) is a valid PDF.

• I encourage you to try the proof of this on your own!
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Chalkboard Example

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f.
given by

fX,Y(x, y) =
{
λ3xe−λy if 0 < x < y < ∞
0 otherwise

(a) Find fY(y), the marginal density of Y.
(b) Find fX|Y(x | y), the conditional density of (X | Y = y)
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Working With Conditional Densities

• Once we understand the idea that fX|Y(x | y) functions behaves like a
PDF (because, in a way, it is one), the following definition becomes
natural:

Definition

Given a pair (X, Y) of continuous random variables,

P(X ∈ A | Y = y) =
∫

A
fX|Y(x | y) dx
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Chalkboard Example (cont’d)

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f.
given by

fX,Y(x, y) =
{
λ3xe−λy if 0 < x < y < ∞
0 otherwise

(c) Compute P(X ≥ 1 | Y ≥ 2)
(d) Compute P(X ≥ 1 | Y = 2)
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Marginal PMFs/PDFs
• Using the connection between conditional PMFs/PDFs and joint

PMFs/PDFs, we can see how one can recover marginal PMFs/PDFs
from condtitional PMFs/PDFs:

Theorem

(1) If (X, Y) denotes a pair of continuous random variables, then

fX(x) =
∫ ∞

−∞
fX|Y(x | y)fY(y) dy

with an analogous formula for fY(y).
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Marginal PMFs/PDFs
• Using the connection between conditional PMFs/PDFs and joint

PMFs/PDFs, we can see how one can recover marginal PMFs/PDFs
from condtitional PMFs/PDFs:

Theorem

(2) If (X, Y) denotes a pair of discrete random variables, then

pX(x) =
∑

y
pX|Y(x | y)pY(y)

with an analogous formula for pY(y).

Topic 01 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 28/54



Proof Outlines

• The proofs for both of these facts are similar: start by writing the
integrand/summand as a ratio involving a joint, cancel like terms,
and integrate/sum.

• I highly encourage you to try these proofs as an exercise in reviewing some
PSTAT 120A-related definitions and results!

• Now, something interesting happens when we consider the mixed
case.
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Mixed Case
• What do I mean by the “mixed” case?
• Well, for example, consider a discrete random variable X and a

continuous random variable Y. Can we define something resembling
a conditional PMF/PDF?

• The answer is, perhaps surprisingly, “yes”!
• As an example (which you will consider on your homework), suppose

Y denotes the number of diseased trees in a forest (and is hence
discrete), but that the rate of diseased trees (which is continuous)
itself varies according to some distribution. Despite the fact that the
number and rate of diseased trees are discrete and continuous,
respectively, it still makes perfect sense to talk about the
unconditional distribution of the number of diseased trees.
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Results

Theorem

Consider a random vector (X, Y).
• If X is discrete and Y is continuous, then

pX(x) =
∫ ∞

−∞
fX|Y(x | y)fY(y) dy

• If X is continuous and Y is discrete, then
fX(x) =

∑
y

fX|Y(x | y)pY(y)

• Moral: for mixed random vectors, integrate/sum according to the type
of variable being conditioned on.
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Conditional Expectations
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Leadup

• Recall that, given a random variable X with density fX(x), the
Law of the Unconscious Statistician (LOTUS) states

E[g(X)] =
∫ ∞

−∞
g(x)fX(x) dx

for well-behaved functions g : R→ R.

• Given that, for a pair (X, Y) of continuous random variables, fX|Y(x | y)
represents a density function [essentially of the “random variable”
(X | Y = y)], it’s perhaps natural to define:
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Conditional Expectation; First Pass

Definition (Conditional Expectation; First Pass)

(1) Given a continuous pair (X, Y) of random variables and a
well-behaved function g : R→ R,

E[g(X) | Y = y] :=
∫ ∞

−∞
g(x)fX|Y(x | y) dx

(2) Given a discrete pair (X, Y) of random variables and a
well-behaved function g : R→ R,

E[g(X) | Y = y] :=
∑

x
g(x)pX|Y(x | y)
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Chalkboard Example

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f.
given by

fX,Y(x, y) =
{
λ3xe−λy if 0 < x < y < ∞
0 otherwise

Compute E[X | Y = y].
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Properties of Conditional Expectations

Theorem (Properties of Conditional Expectations, I)

(I) (Linearity)
E[aX + bY + c | Z = z] = aE[X | Z = z] + bE[Y | Z = z] + c.

(II) E[g(X) | X = x] = g(x).
(III) If X ⊥ Y, then E[X | Y = y] = E[X].
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Conditional Expectation

Definition (Conditional Expectation)

Given random variables X and Y, and the function h(y) := E[X |
Y = y], we define the conditional expectation of X given Y, no-
tated E[X | Y], to be h(Y).

• So, in practice, here’s how we compute E[X | Y]:
(1) Compute h(y) := E[X | Y = y] (which will be a function of y)
(2) Substitute Y in place of y in our expression from step (1).

• Note: E[X | Y] will be a random variable!
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Chalkboard Example

Suppose (X, Y) is a continuous bivariate random vector with joint p.d.f.
given by

fX,Y(x, y) =
{
λ3xe−λy if 0 < x < y < ∞
0 otherwise

Compute E[X | Y].
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Properties of Conditional Expectations

Theorem (Properties of Conditional Expectations, II)

(I) (Linearity) E[aX + bY + c | Z] = aE[X | Z] + bE[Y | Z] + c.
(II) E[g(X) | X] = g(X).

(III) If X ⊥ Y, then E[X | Y] = X.

• Note how these follow almost directly from the theorem titled
(Properties of Conditional Expectations, I), from a few slides ago.
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Leadup

• Since E[X | Y] is itself a random variable, it makes sense to take its
expectation: E[E[X | Y]].

• It’s important we understand what each of these expectations are
taken with respect to.

• The inner expectation is taken with respect to the conditional distribution
(X | Y)

• The outer expectation is taken with respect to Y.
• Hence, it would perhaps be more accurate to write EY [EX|Y(X | Y)], but we often

drop the subscripts for convenience.
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Continuous Realm
• To be explicit, assume X is a continuous random variable, and define

h(y) := E[X | Y = y].

E[E[X | Y]] =: E[h(Y)]

=

∫
R

h(y)fY(y) dy [LOTUS]

=

∫
R

E[X | Y = y]fY(y) dy [Def. of h(y)]

=

∫
R

∫
R

xfX|Y(x | y)fY(y) dx dy [Def. of h(y)]
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Continuous Realm, cont’d

E[E[X | Y]] =
∫
R

∫
R

xfX|Y(x | y)fY(y) dx dy [From prev. slide]

=

∫
R

∫
R

x · fX,Y(x, y)
���fY(y)

·���fY(y) dx dy [Def of fX|Y(x | y)]

=

∫
R

∫
R

xfX,Y(x, y) dx dy [Simplifying]

=

∫
R

x
(∫

R

fX,Y(x, y) dy
)

dx [Rev. Order of int.]

=

∫
R

xfX(x) dx = E[X] [Simplifying]
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Law of Iterated Expectations
• So, we’ve shown that E[E[X | Y]] = E[X].
• Indeed, this is not a coincidence!

Theorem (Law of Iterated Expectations)

Given random variables X and Y, we have

E[E[X | Y]] = E[X]

provided these quantities exist.

• We proved the continuous case above; I’ll ask you to prove the
discrete case later.
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LIE and LOTUS

Theorem

Given random variables X and Y, we have

E[E[g(X) | Y]] = E[g(X)]

provided these quantities exist.

• For example, E[X2] = E[E[X2 | Y]].

Topic 01 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 44/54



Clicker Question!

Clicker Question 2

Let (X | Y = y) ∼ Bin(y,0.25) and Y ∼ Pois(2). What is E[X]?

(A) 0.00
(B) 0.25
(C) 0.50
(D) 2.00
(E) None of the above
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Law of Total Variance

• Since (X | Y) is a random variable, it makes sense to ask what its
variance is. Thankfully, we have a formula for that:

Theorem (Law of Total Variance)

Given random variables X and Y, we have

Var(X) = E[Var(X | Y)] + Var(E[X | Y])

• As an exercise, return to the clicker question from a few slides ago
and try to compute Var(X).
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Example Revisited

Example
Suppose I roll a fair six-sided die. Then, whatever number the die lands
on, I flip that many fair coins. Let X denote the number of heads.
Compute E[X] and Var(X).
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One More Formula [NOT COVERED]

Definition (Expectation Conditional on an Event)

Given a random variable X and an event A with P(A) ̸= 0,

E[X | A] = E[X · 1A]

P(A)

Example
The time that Joe spends talking on the phone is exponentially
distributed with mean 5 minutes. What is the expected length of his
phone call if he talks for more than 2 minutes?
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The Gamma Distribution
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Gamma Function
• Hopefully, everyone is familiar with the distributions you learned in

120A (e.g. normal, exponential, binomial, etc.)
• There is one distribution that is not always covered in 120A, that ends

up being incredibly useful in statistical concepts: the Gamma
Distribution.

• First, I’ll introduce the Gamma function, which arises in mathematics
often:

Γ(r) :=
∫ ∞

0
xr−1e−x dx

• Γ(0) := 1
• recursive property: Γ(r) = (r − 1)Γ(r − 1)
• Γ(n) = (n − 1)! for n ∈ N.
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Gamma Distribution
• Notation: X ∼ Gamma(α, β)
• PDF: fX(x) =

1
Γ(α)βα

xα−1e−x/β · 1{x≥0}

• Expectation and Variance: E[X] = αβ; Var(X) = αβ2
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Special Cases of the Gamma Distribution
• Note that the Gamma(1, β) distribution is equivalent to the Exp(β)

distribution.
• PLEASE NOTE: in PSTAT 120B, we adopt the convention that the parameter of

the exponential distribution is its mean. In other words, saying X ∼ Exp(β)
means E[X] = β and X has a density given by fX(x) = (1/β)e−x/β · 1{x≥0}.

• Another special case of the Gamma distribution is the so-called χ2

distribution (pronounced “kai-squared”).
• Specifically, the χ2

ν distribution is equivalent to the Gamma(ν/2 , 2)
distribution.

• Question for you: what are the expectation and variance of the χ2
ν distribution?

• Also, while we’re at it, let’s derive the density of the χ2
ν distribution on the

board.
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χ2
ν Distribution
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More to Come

• You’ll talk a bit more about the Gamma distribution during section
this week.

• You’ll also show that if X ∼ Gamma(α, β), then

MX(t) =
{
(1 − βt)−α if t < 1/β
∞ otherwise

which will, in turn, allow you to derive the MGF of the χ2
ν distribution.
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