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Univariate vs. Multivariate

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• This was the goal we dealt with over the past several lectures.
• Recall that this is called the univariate setting, as we were

considering functions of only one random variable.
• Right before the midterm, we started exploring some multivariate

transformation problems (specifically, sums and linear
combinations).
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Multivariate

Goal

Given a collection of random variable {Yi}ni=1 and a function g(·),
we seek to describe the random variable U := g(Y1, · · · , Yn).

• For example, the sample mean of a collection of random variables

Yn :=
1
n

n∑
i=1

Yi

is an example of a multivariate transformation of the collection
{Yi}ni=1
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Multivariate

• Perhaps unsurprisingly, dealing with multivariate transformations in
pure generality is quite complicated.

• As such, for the purposes of this class, we will only focus on a handful
of specific multivariate transformations.

• First, however, it will be enlightening to consider the case of bivariate
transformations (i.e. transformations of only two random variables).
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Bivariate

Goal

Given a pair of random variables (Y1, Y2) ∼ fY1,Y2 and a bivariate
function g(·) [e.g. a function that takes two inputs], we seek to
describe the distribution of U := g(Y1, Y2).

• For example, let Y1 denote the concentration of a particular
compound and Y2 denote the concentration of a different compound.
Then the ratio U := Y1/Y2 denotes the relative concentration of the
first compound as compared to the second.
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Bivariate

• Now, as we’ve seen before, if the function g is a linear function [e.g.
U := aY1 + bY2 + c] and if Y1 ⊥ Y2, then the method of MGFs can be
used.

• However, if our transformation g(·) is not linear, or if our random
variables are not independent, then the method of MGFs won’t be
particularly useful.

• Instead, there’s one method that will be particularly useful in pretty
much any bivariate setting: the CDF method!
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Example

• To see what I mean, let’s re-derive a familiar result.

Example
Let Y1, Y2

i.i.d.∼ Exp(θ) and U := (Y1 + Y2). Find the distribution of U.

• Previously we used the MGF method to show that U ∼ Gamma(2, θ).
• Let’s try and show this again, now using the CDF method.
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Example

• First note that the support of U is SU = [0,∞). Hence, for u < 0 we
have FU(u) = 0.

• For a fixed u ≥ 0, we have

FU(u) := P(U ≤ u) = P(Y1 + Y2 ≤ u)

• And what do you know - this is just a familiar PSTAT 120A-style double
integral problem!

Topic 2.5 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 8/58



Example

Y1

Y2

Y1 + Y2 = u

u

u
• Neither order of integration is

particularly harder than the
other

• Hence, let’s (somewhat
arbitrarily) pick the order dy1dy2.
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Example

FU(u) = P(Y1 + Y2 ≤ u)

=

∫ u

0

∫ u−y2

0
fY1,Y2(y1, y2) dy1 dy2 =

∫ u

0

∫ u−y2

0

1
θ2e

−(y1+y2)/θ dy1 dy2

=
1
θ

∫ u

0
e−y2/θ

(∫ u−y2

0

1
θ
e−y1/θ dy1

)
dy2

=
1
θ

∫ u

0
e−y2/θ

(
1 − e−(u−y2)/θ

)
dy2

• Can anyone tell me how I was able to compute the blue integral so
quickly?
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Example

FU(u) =
1
θ

∫ u

0
e−y2/θ

(
1 − e−(u−y2)/θ

)
dy2

=
1
θ

∫ u

0

(
e−y2/θ − e−u/θ

)
dy2

= 1 − e−u/θ − u
θ
e−u/θ = 1 −

(u
θ
+ 1
)
e−u/θ

• So, in all, we have

FU(u) =
{

0 if u < 0
1 −

(u
θ
+ 1
)
e−u/θ if u ≥ 0
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Example

• Differentiating wrt. u and incorporating the support, we find

fU(u) =
[
− 1
θ
e−u/θ + 1

θ

(u
θ
+ 1
)
e−u/θ

]
· 1{u≥0}

=
u
θ2e

−u/θ · 1{u≥0}

which, indeed, is the density of the Gamma(2, θ) distribution.
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Chalkboard Example

Given Y1, Y2
i.i.d.∼ Unif[0, 1], find the density of U := Y2/Y1.
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Caution!

• As the previous example illustrates, we need to be very careful about
considering all possible cases when drawing our pictures!

• This is especially true when one (or both) of the random variables
being transformed has a “truncated” support, like [0, 1] or [2, 4].

• As yet another example, try deriving the distribution of U := (Y1 + Y2)
when Y1 and Y2 are i.i.d. Unif[0, 1] random variables.

• The resulting distribution is a special case of what is known as the
triangular distribution- can you see why?
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Jacobians
• So, we’ve seen how the method of MGFs extends nicely into the

bivariate (indeed, even the multivariate) setting, along with how the
CDF method alos extends nicely into the bivariate setting.

• A natural question arises- does there exist an analog of the Change of
Variable formula?

• Well, first things first, note that we cannot use the Change of Variable
formula as it stands in a bivariate setting - what is the inverse of a
bivariate function?

• Now, there does exist something called the method of Jacobians
which can be viewed as a sort of bivariate analog of the Change of
Variable formula. It is discussed in Section 6.6 of the textbook.
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Order Statistics
• Finally, let’s consider one very interesting set of multivariate

transformations.
• Let’s start simple: given an i.i.d. collection of random variables {Yi}ni=1,

what can we say about the maximum of these random variables?
• Again, note- this is a multivariate transformation! Specifically, with

g(y1, · · · , yn) = max{y1, · · · , yn}

• The notation we use for the maximum of a collection {Yi}ni=1 of
random variables is

Y(n) := max
1≤i≤n

{Yi}
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Maximum

Goal

Given a collection {Yi}ni=1 of i.i.d. random variables with den-
sity fY(y) and CDF FY(y), we seek to derive the density of Y(n) :=
max1≤i≤n {Yi}

• Well, this transformation is very much nonlinear, so the MGF method
won’t be of much help here.

• This means there’s really only one method we can try to use - the CDF
method!
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Maximum

FY(n)(y) := P(Y(n) ≤ y) = P

(
max
1≤i≤n

{Yi} ≤ y
)

• At this point, we need to stop and think.
• What the event on the RHS is saying is: “the largest of all the Yi’s is

less than y.”
• The key piece of logic here is that this implies all the Yi’s must also be

less than y!
• Think of it this way - we’re asserting that the largest of the Yi’s is less

than y. By definition of being the largest, all of the other Yi’s must be
less than the maximum, which, again, is less than y. Hence, all the Yi’s
must be less than y.
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Maximum

FY(n)(y) := P(Y(n) ≤ y) = P

(
max
1≤i≤n

{Yi} ≤ y
)

= P

( n⋂
i=1

{Yi ≤ y}
)

=
n∏
i=1

P(Yi ≤ y) =
n∏
i=1

FY(y) = [FY(y)]n

• I will, of course, ask us to go through and justify each step carefully
together.
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Result

Theorem (Distribution of Sample Maximum)

Given a collection of i.i.d. random variables {Yi}ni=1 with density
fY(y) and CDF FY(y), the density of

Y(n) := max
1≤i≤n

{Yi}

is given by
fY(n)(y) = n[FY(y)]n−1 · fY(y)
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Example
Example
Given Y1, · · · , Yn

i.i.d.∼ Unif[0, 1], derive the density of Y(n).
• We simply need to plug into the theorem on the previous slide:

fY(y) = 1{0≤y≤1}; FY(y) =


0 if y < 0
y if 0 ≤ y < 1
1 if y ≥ 1

• Thus,
fY(n)(y) = nyn−1 · 1{0≤y≤1}
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Minimum

Goal

Given a collection {Yi}ni=1 of i.i.d. random variables with den-
sity fY(y) and CDF FY(y), we seek to derive the density of Y(1) :=
min1≤i≤n {Yi}

• I’d like to highlight the notation once again: Y(1) is the notation we
use for the minimum of the collection {Yi}ni=1.

• To achieve our goal, let’s start as we did for the maximum, with the
CDF method.
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Maximum

FY(1)(y) := P(Y(1) ≤ y) = P

(
min

1≤i≤n
{Yi} ≤ y

)
?
= P

( n⋂
i=1

{Yi ≤ y}
)

• The last equality does not hold!
• Here’s why: just because the smallest of a set of numbers is less than
y, we cannot immediately conclude that all of the numbers are also
less than y.

• For example, consider the set of numbers {2, 4}; clearly the smallest of the
numbers (i.e. 2) is smaller than 3, however it is not the case that both numbers
are smaller than 3.
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Maximum

• What is true is that: if the smallest of a set of numbers is larger than
y, then all numbers must be larger than y.

• Again, say we assume the smallest of the Yi’s is larger than 2. By definition of
being the smallest, all of the other Yi’s will be larger than Y(1), which is
assumed to be bigger than y - hence all of the Yi’s will be bigger than y.

• So, we’d like to convert everything from CDFs to survival functions
(i.e. one-minus CDFs).
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Minimum

FY(1)(y) := 1 − FY(1)(y) = P(Y(1) > y)

= P

( n⋂
i=1

{Yi > y}
)

=
n∏
i=1

P(Yi > y) =
n∏
i=1

[1 − FY(y)] = [1 − FY(y)]n
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Result

Theorem (Distribution of Sample Minimum)

Given a collection of i.i.d. random variables {Yi}ni=1 with density
fY(y) and CDF FY(y), the density of

Y(1) := min
1≤i≤n

{Yi}

is given by
fY(1)(y) = n[1 − FY(y)]n−1 · fY(y)
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Example
Example
Given Y1, · · · , Yn

i.i.d.∼ Exp(θ), derive the density of Y(1).
• We simply need to plug into the theorem on the previous slide:

fY(y) =
1
θ
e−y/θ · 1{y≥0}; 1 − FY(y) =

{
1 if y < 0
e−y/θ if y ≥ 0

• Thus,

fY(1)(y) = n
(
e−y/θ

)n−1 · 1
θ
e−y/θ · 1{y≥0} =

n
θ
e−ny/θ · 1{y≥0}
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Result

Theorem (Minimum of Exponentials)

If Y1, · · · , Yn
i.i.d.∼ Exp(θ), then

Y(1) := min
1≤i≤n

{Yi} ∼ Exp
(
θ

n

)
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General Order Statistics

• Now, there is nothing restricting us to only considering minima and
maxima.

• For example, we might ask: what is the distribution of the second
smallest of the collection {Yi}ni=1?

• In general, we define the kth order statistic, notated Y(k), to be the kth

smallest of {Yi}ni=1.
• Section 6.7 of your textbook gives a general formula for the density of
Y(k); we will not concern ourselves with the general formula this
quarter.

• You should, however, know the formulas for the minimum and the maximum.
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Transformations Involving the Normal Distribution
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Leadup

• We are almost ready to make our transition from probability to
statistics.

• First, there are a few results we should derive.
• Not only will we be utilizing these results going forward, we’re also

going to be using the techniques used to derive them incredibly often.
• So, I encourage you not only to pay attention to the results themselves, but

also the methods used to prove them!
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Disclaimer

• I’d like to be a bit upfront - there are a lot of results that are going to
be coming over the next few slides.

• We’ll actually be using every one of these results again in the coming lectures,
so they are all very important!

• However, I’d like to stress (and will continue to stress) that many of
these results are not new! Rather, they are either simply restatements
of PSTAT 120A results, or follow almost directly from
previously-derived results in this class.
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Standardization

• Let’s start off with a result that should be familiar to you, from PSTAT
120A (just restated slightly more formally).

Theorem (Standardization Result)

Given Y ∼ N (µ, σ2) and U := (Y − µ)/σ, we have U ∼ N (0, 1).
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Direct Proof
• Note that U := Y−µ

σ
= 1

σ
Y − µ

σ
. Hence, by our Useful MGF Result:

MU(t) = e−(µ/σ)t ·MY

(
t
σ

)
= e−(µ/σ)t · exp

{
µ

(
t
σ

)
+

σ2

2

(
t
σ

)2}
= exp

{
�
�
�−µt
σ

+
�
�
�µt
σ

+
��σ2

2 · t
2

��σ2

}
= et2/2

which we recognize as the MGF of the N (0, 1) distribution.

Topic 2.5 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 34/58



Result

Theorem (Normal Sum of Squares)

Given Y1, Y2, · · ·
i.i.d.∼ N (µ, σ2), we have

n∑
i=1

(
Yi − µ

σ

)2

∼ χ2
n

Proof.
By the (Standardization Result), (Yi − µ)/σ follows a standard normal. We
know that the square of a standard normal distribution is χ2

1 .
Furthermore, independent χ2 random variables sum to another
χ2−distributed random variables with degrees of freedom also
summing.
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Sample Mean

Theorem (Sample Mean of i.i.d. Normal Sample)

Given Y1, Y2, · · ·
i.i.d.∼ N (µ, σ2),

Yn :=
(

1
n

n∑
i=1

Yi

)
∼ N

(
µ ,

σ2

n

)

Proof.
Appeal to Theorem (Closure of Normal Distribution under Linear
Combinations) with ai = 1/n.
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Result

Theorem (Standardization of Sample Mean)

Given Y1, Y2, · · ·
i.i.d.∼ N (µ, σ2) and Yn := n−1∑n

i=1 Yi,

U :=
√
n
(
Yn − µ

σ

)
=
Yn − µ

σ/
√
n

∼ N (0, 1)

Proof.
Combine results(Sample Mean of i.i.d. Normal Sample) and
(Standardization Result).
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Example

Example
The weight of a randomly-selected chocolate bar is normally distributed
with standard deviation 1.2 oz, and some unknown mean. Suppose a
random sample of 16 chocolate bars is taken - what is the probability that
the average weight of these 16 bars lies within 0.1 oz of the true average
weight? Assume the weights of different chocolate bars are independent
of one another.
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Solutions

• Let Yi denote the weight (in oz) of the ith randomly-selected chocolate
bar; then, from the problem statement,

Yi
i.i.d.∼ N (µ , 1.44)

where µ denotes the true average weight of a chocolate bar.
• Define the sample mean weight of the 16 randomly-selected

chocolate bars to be

Y16 :=
1

16

16∑
i=1

Yi
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Solutions
• By the previous theorem,

Y16 ∼ N
(
µ ,

1.44
16

)
∼ N (µ,0.09)

or, equivalently (by our standardization result)
Y16 − µ√

0.09
∼ N (0, 1)

• We seek the probability that Y16 lies within 0.1 oz of µ; i.e. we seek
P(|Y16 − µ| < 0.1) = P(−0.1 < Y16 − µ < 0.1)

• We’re now in 120A territory! Specifically, we standardize and then
write our answer in terms of Φ(·).
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Solutions

P(|Y16 − µ| < 0.1) = P(−0.1 < Y16 − µ < 0.1)

= P

(
− 0.1√

0.09
<
Y16 − µ√

0.09
<

0.1√
0.09

)
= Φ

(
1
3

)
− Φ

(
− 1

3

)
= 2Φ

(
1
3

)
− 1 ≈ 0.2611 = 26.11%
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Result
• Now, the result (Standardization of Sample Mean) is an incredibly

useful result which we will leverage several times going forward.
• But, it does depend on knowing the population variance σ2.
• In some real-world cases (as we will see soon), σ2 is not known -

instead, all that is computable is the sample variance

S2
n :=

1
n− 1

n∑
i=1

(Yi − Yn)2

• Note that S2
n is a random variable. Intuitively, this makes sense-

different random samples will have (potentially) different observed
sample variances!
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Result

Theorem (Distribution of Sample Variance)

Given Yi
i.i.d.∼ N (µ, σ2), define the sample variance as

S2
n :=

1
n− 1

n∑
i=1

(Yi − Yn)2

We have that n− 1
σ2 S2

n ∼ χ2
n−1
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Proof

• The proof of this fact is fairly involved, so we will skip it for this class.
• Please note the degrees of freedom: (n− 1), not n.
• As an aside, there are two main ways of thinking about degrees of

freedom: one is simply as the parameter of a given distribution (e.g.
χ2, t, etc.).

• However, another way to view degrees of freedom is as the number of
terms in a given sum that are allowed to vary freely.
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Degrees of Freedom
• Consider, for example, the formula for S2

n again:

S2
n :=

1
n− 1

n∑
i=1

(Yi − Yn)2

• Once we know the values of Y1, · · · , Yn−1 and the value of Yn (which
must be computed before computing S2

n), the value of Yn is uniquely
determined. This is because nYn = Y1 + · · ·+ Yn−1 + Yn!

• So, in the summation definition of S2
n, there are really only (n− 1)

terms that are free to vary - the nth term is uniquely determined by
the other (n− 1).
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Degrees of Freedom

• As yet another example, consider the following quantity:

S2
n,2 :=

1
n

n∑
i=1

(Yi − µ)2

where µ := E[Yi].
• This quantity has n degrees of freedom, as all n terms in the sum are

free to vary.
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Example

Example
Given Y1, Y2, · · ·

i.i.d.∼ N (0, 1), compute P(0.9 ≤ S2
5 ≤ 1.2) where

S2
5 :=

1
4

5∑
i=1

(Yi − Y5)
2 and Y5 :=

1
5

5∑
i=1

Yi
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Solutions
• By the result (Distribution of Sample Variance), we have that

5 − 1
1 S2

5 = 4S2
5 ∼ χ2

5−1 ∼ χ2
4

• Hence,

P(0.9 ≤ S2
5 ≤ 1.2) = P(4 · 0.9 ≤ 4S2

5 ≤ 4 · 1.2)
= P(3.6 ≤ 4S2

5 ≤ 4.8)
= Fχ2

4
(4.8)− Fχ2

4
(3.6)

where Fχ2
ν
(x) denotes the CDF of the χ2

ν distribution, evaluated at x.
• Using a computer software, we can find this to be around 0.1544.
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t-Distribution

Definition (Student’s t−distribution)

Given Z ∼ N (0, 1) and W ∼ χ2
ν with Z ⊥ W, then

T :=
Z√
W/ν

follows the so-called t−distribution with ν degrees of freedom,
notated T ∼ tν .
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t-Distribution

Theorem (t−distribution Density)

If T ∼ tν , then T has density given by

fT(t) =
Γ
(
ν+1

2
)

√
νπ · Γ

(
ν
2
) · (1 + x2

ν

)− ν+1
2

Proof.
This can be proven using the CDF method, and the definition of the
t−distribution on the previous slide.
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Result
• Let’s quickly recall why we even started talking about the sample

variance.
• We know that

√
n(Yn − µ)/σ follows a standard normal distribution;

however, sometimes σ is unknown.
• So, a natural question arises - what happens if we replace σ with
Sn :=

√
S2
n? I.e., what happens if we replace the population standard

deviation with the sample standard deviation

Sn :=
√
S2
n =

√√√√ 1
n− 1

n∑
i=1

(Yi − Yn)2
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Result

Theorem (Modified Standardized Sample Mean)

Given Y1, Y2, · · ·
i.i.d.∼ N (µ, σ2), Yn := n−1∑n

i=1 Yi, and Sn :=√
(n− 1)−1∑n

i=1(Yi − Yn)2,

U :=
√
n
(
Yn − µ

Sn

)
∼ tn−1
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Result

• In other words, replacing the population standard deviation with the
sample standard deviation breaks the normality of the sample mean.

• Intuitively, this makes sense! When we replace σ (which is
deterministic) with Sn (which is random), we’re essentially increasing
the randomness of our overall statistic [we’ll define a statistic more
rigorously next lecture]. It makes sense, then, that we would need to
use a distribution that has wider tails than the normal distribution (to
allow for greater uncertainty). Indeed, the t distribution has wider
tails than the normal distribution!
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Example

Example
Let Y1, Y2, Y3

i.i.d.∼ N (0, 1), and set

U :=
√

3 ·
1
3(Y1 + Y2 + Y3)√

1
2

[(
Y1 − Y1+Y2+Y3

3

)2
+
(
Y2 − Y1+Y2+Y3

3

)2
+
(
Y3 − Y1+Y2+Y3

3

)2
]

What is the distribution of U? Include both the distribution’s name as
well as any/all relevant parameter(s)!
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Solution

• So, I guess we should start with the CDF method, right?
• Ew, no. (Unless you want to - in which case, go ahead...?)
• I think it would be a better idea to use our previously-derived results!
• That is, once we stare at U a bit more, we start to recognize some

familiar quantities.
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Solution
• For example, 1

3(Y1 + Y2 + Y3) =
Y1+Y2+Y3

3 is just another name for Y3, the
sample mean of {Yi}3

i=1!
• Additionally, take a look at the denominator:√

1
2

[(
Y1 −

Y1 + Y2 + Y3

3

)2

+

(
Y2 −

Y1 + Y2 + Y3

3

)2

+

(
Y3 −

Y1 + Y2 + Y3

3

)2]
• We can rewrite this as√

1
3 − 1 ·

[
(Y1 − Y3)2 + (Y2 − Y3)2 + (Y3 − Y3)2

]
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Solution

√
1

3 − 1 ·
[
(Y1 − Y3)2 + (Y2 − Y3)2 + (Y3 − Y3)2

]
=

√√√√ 1
3 − 1

3∑
i=1

(Yi − Y3)2 =
√
S2

3 = S3

• In other words, the denominator is just the sample standard
deviation of {Yi}3

i=1!
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Solution

• So, once the dust clears, we have

U :=
√

3 ·
1
3(Y1 + Y2 + Y3)√

1
2

[(
Y1 − Y1+Y2+Y3

3

)2
+
(
Y2 − Y1+Y2+Y3

3

)2
+
(
Y3 − Y1+Y2+Y3

3

)2
]

=
√

3
(
Y3 − 0
S3

)
• Hence, by our result (Modified Standardized Sample Mean) with
µ = 0, we can immediately conclude that U ∼ t3−1; i.e. U ∼ t2 .

Topic 2.5 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 58/58


	Multivariate Transformations
	Transformations Involving the Normal Distribution

