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Outline

1. Univariate Transformations

2. Method of Distribution Functions (CDF Method)

3. Method of Transformations (Change of Variable Formula)

4. Method of Moment-Generating Functions (MGF Method)



Leadup

• Recall, from PSTAT 120A, that given an appropriate probability space
(Ω,F ,P), we can think of a random variable X as a mapping:

X : Ω → R

• Additionally, recall the following fact from precalculus: given a
mapping f1 : A→ B and another mapping f2 : B→ C, then
(f2 ◦ f1) : A→ C.

• This means, given a function g : R→ R and a random variable
X : Ω → R, we have (g ◦ X) : Ω → R.
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Leadup

• In this way, we can think of (g ◦ X) as a random variable itself!
• For example, given a random variable X, then the quantity X2 will also be a

random variable.
• Another way of saying this: functions of random variables are

themselves random variables.
• “Functions of random variables?” That sounds awfully abstract...
• But, if we think about it a bit more, this isn’t as abstract as it may

seem!
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Leadup

• For example, let HI denote the height of a randomly-selected
individual as measured in inches, and suppose HI ∼ N (70, 2).

• Let HC denote the height of a randomly-selected individual as
measured in centimeters.

• Clearly, the random variables HI and HC are related: specifically,
HC = g(HI) where g(t) = 2.54 ∗ t [since this is the conversion formula
between inches and centimeters].

• So, unit conversion is a fairly simple example of one way transformations (i.e.
taking functions of random variables) can be useful.
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Leadup

• Transformations can also be used to summarize data.
• For example, consider a sequence {Xi}ni=1 := X1, · · · , Xn of random

variables.
• By the way, I’ll be using this notation a lot: {Xi}ni=1 is a shorthand for X1, · · · , Xn.

• The sample mean Xn := n−1∑n
i=1 Xi [which you hopefully saw in PSTAT

120A!] is actually a function of the original sequence of random
variables, and is hence an example of a transformation.
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Leadup

• Now, these two examples indicate that there are perhaps two
sub-cases to consider: transformations of single random variables,
and transformations of multiple random variables.

• We often refer to a transformation of a single random variable as a
univariate transformation, and a transformation of multiple random variables
as a multivariate transformation.

• For simplicity’s sake, let’s start off with univariate transformations.
• Specifically, given a random variable Y and a function g : R→ R, we will seek

to explore properties of the random variable U := g(Y).
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Univariate Transformations
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Goal

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• What do we mean by “describe” the random variable U?
• Well, there are a couple of things we could seek to do. First, we could

try to compute E[U].
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LOTUS

• It turns out... we’ve already done that!
• Specifically, since U := g(Y), we have that E[U] = E[g(Y)].
• The Law of the Unconscious Statistician (LOTUS), which we saw in

PSTAT 120A, tells us

E[g(Y)] =
∫
R

g(y)fY(y) dy

• Similar considerations will allow us to compute Var(U).
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Distributions
• Okay, that’s useful! But it’s not the whole picture.
• Why don’t we get a little more ambitious, and seek to find the
distribution of U?

• First, let me be a little more clear about what I mean by “distribution”.
• Sometimes, we can identify a distribution by name (e.g. “Exponential

distribution with parameter θ = 0.5”, or “Standard normal
distribution”).

• But, a distribution could just as easily have been described by any of
the following:

• Its distribution function (i.e. CDF)
• Its density function (PDF)
• Its MGF (moment-generating function)
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Distributions
• For example, suppose I tell you the random variable W has density

function given by
fW(w) = 2e−2w · 1{w≥0}

• You would immediately be able to tell me “oh, W follows the
Exponential distribution with parameter θ = 1/2.”

• This would, in turn, automatically tell you that W has distribution
function

FW(w) =
{

1 − e−2w if w ≥ 0
0 otherwise

and MGF

MW(t) =
{
(1 − t/2)−1 if t < 1/2
∞ otherwise
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Distributions
• Similarly, if I tell you that the random variable T has MGF given by

MX(t) = exp

{
2t+ 1

2t
2
}

you would immediately be able to say

fX(x) =
1√
2π

exp

{
− 1

2(x − 2)2
}

and
FX(x) = Φ (x − 2) ; Φ(x) :=

∫ x

−∞

1√
2π
e−z2/2 dz
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Distributions
• Now, what if we have a random variable X whose density is given by

fX(x) = cos(x) · 1{0≤x≤π/2}

• What is the distribution of X?
• Well... it’s just the density above!
• What I mean is this - the distribution of X doesn’t have a name, like

“Exponential” or “Gamma”. But it certainly has a distribution!
• All of this is to say: I encourage you to get into the habit of thinking

about “distributions” fairly broadly, and thinking of a distribution as
either a density function, distribution function, or MGF (or all three).
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Back to Transformations

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• Now, our discussion on the previous few slides tells us that there are
three approaches to achieving our goal above.

• We could go after the density function of U.
• Or we could go after the distribution function of U.
• Or we could go after the MGF of U.
• Indeed, each of these three approaches are what our textbook calls

different “methods”.
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Support
• Before we dive into these three methods, let’s talk a bit about

support.
• Recall that the support (aka “state space”) of a random variable Y is

the set of all values that Y maps to: i.e. SY := Y(Ω). Equivalently, it’s
the set of all values y for which the density fY(y) is nonzero.

• Then, given a random variable U := g(Y), we have SU = g(SY).
• That is, the support of a transformed random variable is the image of the

original support under the transformation.

• Though this formula seems inoccuous enough, finding the support of
a transformed random variable can be trickier than it first appears...
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Support

• A simple way I like to think about things is to draw a picture.
• Specifically, let’s say we have an interval [a,b] and a transformation
g : R→ R.

• To figure out what g([a,b]) looks like, simply graph the function
y = g(x), indicate [a,b] on the x−axis, and figure out what the
corresponding values on the y−axis are.
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Support

[a, b]

g([a, b])

x

y

y = g(x)

• Note: in general, g([a,b]) ̸= [g(a),g(b)]!
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Clicker Question!

Clicker Question 1

For A = [0 , 6] and g(x) = cos(πx), what is the correct expression
for g(A)?

(A) [0 , 1] (B) [0 , 6] (C) [−1 , 1] (D) {0}
(E) None of the above

Try this On Your Own:
Example
For A = [−1 , 1] and g(x) = x2, what is the correct expression for g(A)?
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Method of Distribution Functions (CDF Method)
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CDF Method
• Let’s consider the following rephrasing of our goal:

Goal

Given a random variable Y and a function g(), we seek to derive
an expression for FU(u) := P(U ≤ u), the CDF of U.

• As a concrete example, let Y ∼ Exp(θ) and let U := cY for a positive
constant c.

• If it helps, you can think of this in terms of our inches-to-centimeter
conversion example from the start of this lecture: Y can denote the heights in
inches and U can denote the heights in cenimeters.
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CDF Method
• Now, we know everything we could want to know about Y.
• Specifically, we have the CDF of Y:

FY(y) =
{

1 − e−y/θ if y ≥ 0
0 otherwise

• So, if we can relate FU(u) to FY(y), we’d be done.
• Note:

FU(u) := P(U ≤ u) = P(cY ≤ u)
• Divide through by c:

FU(u) = P
(
Y ≤ u

c

)
= FY

(u
c

)
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CDF Method
• So, plugging into our expression for FY(y), we have:

FU(u) = FY
(u
c

)
=

{
1 − e(u/c)/θ if (u/c) ≥ 0
0 otherwise

=

{
1 − eu/(cθ) if u ≥ 0
0 otherwise

• And we’re done! We’ve accomplished our goal, and found an
expression for FU(u), the CDF of U.
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Going Further

• Now, in this particular case, we can take things a step further.
• Specifically, doesn’t that CDF look awfully familiar?
• Indeed, it is the CDF of the Exp(cθ) distribution!
• So, what we’ve essentially shown is:

Theorem (Closure of Exponential Distribution under Multiplication)

Given Y ∼ Exp(θ) and a positive constant c, then (cY) ∼ Exp(cθ).

• We’re going to use this result a LOT!
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Interpretation

• I know this might seem a little abstract - what does it mean to
“multiply the exponential distribution by a constant?”

• Again, if it helps, you can always think in terms of our
inches-to-centimeter problem from the start of these slides.

• If Y ∼ Exp(θ) denotes the height of a randomly selected person in
inches, then the distribution of heights in centimeters will also be
exponential, this time with mean 2.54θ.
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Example

• Let’s do another example together.
• Suppose Y has density function given by

fY(y) = 2y · 1{0≤y≤1}

and again define U := cY for a positive constant c.
• Now, before we got lucky because we immediately knew what the CDF

of Y was.
• But, even though we can’t immediately recognize the CDF of Y in this

example, we can still derive it!

Topic 02 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 24/73



Example
• By definition, for a y ∈ [0, 1],

FY(y) =
∫ y

−∞
fY(t) dt

=

∫ y

−∞
2t · 1{0≤t≤1} dt =

∫ y

0
2t dt = y2

• Clearly, for y < 0 we have FY(y) = P(Y ≤ y) = 0 and for y > 1 we have
P(Y ≤ y) = 1, meaning

FY(y) =


0 if y < 0
y2 if 0 ≤ y < 1
1 if y ≥ 1
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Example
• And now we’re in the same position as before!

P(U ≤ u) = P(cY ≤ u) = P
(
Y ≤ u

c

)
= FY

(u
c

)

=


0 if (u/c) < 0
(u/c)2 if 0 ≤ (u/c) < 1
1 if (u/c) ≥ 1

=


0 if u < 0
u2/c2 if 0 ≤ u < c
1 if u ≥ c
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Example

• One more example before we summarize.
• Let Y ∼ N (0, 1) and U := Y2.
• A quick sketch (see chalkboard) reveals that SU = [0,∞). So,
FU(u) = 0 whenever u < 0.

• Additionally, we (again) have the CDF of Y: FY(y) = Φ(y), where Φ(·)
denotes the standard normal CDF.
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Example

• So, let’s try and proceed like we did before! For a fixed u ≥ 0,

FU(u) := P(U ≤ u) = P(Y2 ≤ u)

• Now, it’s tempting to continue this as

FU(u) = P(Y2 ≤ u) = P(Y ≤
√
u)

This is, however, INCORRECT.
• Let’s understand why.
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Example

• There are a couple of ways to understand why the above is incorrect.
• One is to recall a fact from algebra/precalculus that you might have

forgotten:
√
· means the principal square root, and so, for any real

number x, we have
√
x2 = |x|.

• Remember, both −3 and 3 have squares equal to 9! But, when we write
√

9, we
implicitly mean the principal square root which is why we write

√
9 = 3.

• So, what we really have is:

FU(u) := P(U ≤ u) = P(Y2 ≤ u) = P(|Y| ≤
√
u) = P(−

√
u ≤ Y ≤

√
u)
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Example (cont’d)

• Now, there’s another way to see how to get from P(Y2 ≤ u) to
P(−

√
u ≤ Y ≤

√
u); one that doens’t require us to dig into our

memory banks and dredge up something from algebra/precalculus,
and instead uses pictures.
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Video

https://www.youtube.com/watch?v=HtzqjHfoRbw
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Static Image

Y

U
U = Y2

U = u

−
√
u

√
u
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Example (cont’d)

• So, let’s finish up our example!

FU(u) = · · · = P(−
√
u ≤ Y ≤

√
u)

= FY(
√
u)− FY(−

√
u) = Φ(

√
u)− Φ(−

√
u)

= Φ(
√
u)− [1 − Φ(

√
u)] = 2Φ(

√
u)− 1

• That’s a bit anticlimactic... Let’s differentiate wrt. u and obtain the
PDF of U:
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Example (cont’d)

fU(u) =
d

duFU(u)

=
d

du [2Φ(
√
u)− 1]

= 2 · 1
2
√
u
· ϕ(

√
u) = 1√

u
ϕ(
√
u)

• Let’s incorporate the support of U, and simplify:
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Example (cont’d)

fU(u) =
1√
u
ϕ(
√
u) · 1{u≥0}

=
1√
u
· 1√

2π
e− 1

2 (
√
u)2 · 1{u≥0}

=
1√

π · 21/2 · u1/2−1 · e−u/2 · 1{u≥0}

• One useful fact: Γ(1/2) =
√
π. Hence:

fU(u) =
1

Γ(1/2) · 21/2 · u1/2−1 · e−u/2 · 1{u≥0}

• Indeed, U ∼ Gamma(1/2 , 2) d
= χ2

1 !
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Theorem

• This is an extremely important result which we will use repeatedly
throughout this course. Let’s make it more formal by rephrasing it as
a theorem:

Theorem (Square of Standard Normal)

If Y ∼ N (0, 1) and U := Y2, then U ∼ χ2
1 .

• The proof of this theorem is exactly the work we did on the previous
slides.
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Recap

• Whew- that was a lot of work! Let’s recap.
• Given a random variable Y, and U := g(Y) for some function
g : R→ R, we can use the method of distribution functions (aka the
CDF) method to find the distribution of U.

• Specifically, this entails:
(1) Writing FU(u), the CDF of U, in terms of FY(y), the CDF of Y, by basically finding

an equivalent formulation for the event AU := {U ≤ u} that is in terms of Y
(2) Plugging into the CDF of Y, and simplifying as necessary.
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Method of Transformations (Change of Variable
Formula)
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Leadup

• Let’s, for a moment, return the example where we squared the
standard normal distribution.

• Specifically, we had Y ∼ N (0, 1) and U := Y2.
• After some work, we found that FU(u) = 2Φ(

√
u)− 1.

• Then, we differentiated wrt. u to obtain a formula for fU(u).
• This begs the question - can we perhaps “extend” the CDF method to

give us a formula for the PDF of U directly?
• The answer turns out to be “yes, under some conditions.”
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Leadup

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• Let’s see what happens if we try to apply the CDF method:

FU(u) := P(U ≤ u) = P(g(Y) ≤ u)

• Isn’t it tempting to apply g−1(·) to both sides of the inequality?
• It is! But we need to be careful. First, remember that we don’t have

any guarantee that g−1(·) even exists!
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Leadup
• Alright, then - let’s add some assumption about our function g(·).

Goal

Given a random variable Y and a strictly increasing function g(),
we seek to find fU(u), the PDF of U.

• Now we are guaranteed the existence of g−1(·).
• Furthermore, since we assumed g(·) itself to be strictly increasing,
g−1(·) will also be strictly increasing.

• Hence, we “preserve the direction of inequality” when applying g−1(·)
to both sides of an inequality.
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Leadup
• Then:

FU(u) := P(U ≤ u) = P(g(Y) ≤ u) = P(Y ≤ g−1(u)) = FY(g−1(u))

• We can now differentiate wrt. U and apply the chain rule (from
calculus; we can discuss this further on the chalkboard):

fU(u) :=
d

duFU(u)

=
d

duFY(g
−1(u))

= fY(g−1(u)) · d
dug

−1(u)
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Leadup
• If we instead assume that g(·) is strictly decreasing, a similar

computation (which I’ll be asking you to complete on your
homework) yields

fU(u) = fY(g−1(u)) ·
[
− d

dug
−1(u)

]
• So, if we instead simply assume that g(·) is strictly monotonic, we can

summarize our findings as:

fU(u) =
{
fY(g−1(u)) ·

[ d
dug

−1(u)
]

if g(·) is increasing
fY(g−1(u)) ·

[
− d

dug
−1(u)

]
if g(·) is decreasing
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Change of Variable Formula
• A bit of simplification (and recollections of how derivatives of

increasing/decreasing functions behaves) allows us to rewrite our
result above as:

Theorem (Change of Variable Formula)

Given a random variable Y ∼ fY and a function g(·) that is strictly
monotonic over the support of Y, then the random variable U :=
g(Y) has density given by

fU(u) = fY[g−1(u)] ·
∣∣∣∣ d
dug

−1(u)
∣∣∣∣
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Example
• As an example, let’s re-derive the closure under multiplication

property of the Exponential distribution, this time using the Change
of Variable formula.

• That is: let Y ∼ Exp(θ), and set U := cY for some positive constant
c > 0.

• Since the transformation g(y) = cy is strictly monotonic (specifically,
it’s strictly increasing) it’s inverse exists and is calculable as
g−1(u) = u/c. Hence:∣∣∣∣ d

dug
−1(u)

∣∣∣∣ = ∣∣∣∣ d
du

(u
c

)∣∣∣∣ = ∣∣∣∣1c
∣∣∣∣ = 1

c
where we have dropped the absolute values in the last step since we
are assuming c > 0.

Topic 02 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 45/73



Example
• Additionally, since Y ∼ Exp(θ) we know that

fY(y) =
1
θ
exp
{
−y
θ

}
· 1{y≥0}

• Therefore, plugging into the change of variable formula, we have

fU(u) = fY[g−1(u)] ·
∣∣∣∣ d
dug

−1(u)
∣∣∣∣

=
1
θ
exp

{
−
(u
c
)

θ

}
· 1{ u

c≥0} · 1
c

=
1
cθ exp

{
− u
cθ

}
· 1{u≥0}
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Clicker Question!

Clicker Question 1

Given Y ∼ Unif[1, 2] and U := 2X+ 3, does U also follow a Uniform
Distribution?

(A) Yes; (B) No
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Change of Variable Formula

• Now, note that the only assumption we need to make about g(·) in
order for the Change of Variable formula to hold is that it is strictly
monotone over the support of Y.

• For example, suppose Y ∼ Unif[−1,0] and take U := Y2.
• Though the function g(y) = y2 is not strictly monotone over R, it is

strictly monotone over SY := [−1,0] (i.e. the support of Y), and hence
its inverse exists and is given by g−1(u) = −

√
u.

• The Change of Variable formula can therefore safely be applied.
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Change of Variable Formula

• In general, however, the Change of Variable formula does not work
when we are dealing with transformations that are not strictly
monotone.

• For example, given Y ∼ N (0, 1) and U := Y2, we cannot directly apply
the Change of Variable formula.

• Admittedly, there does exist a way to generalize the Change of Variable formula
to work in a situation like this, but we won’t cover that in PSTAT 120B. If you’re
curious, I’m happy to walk you through the general outline during Office Hours.
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Method of Moment-Generating Functions (MGF
Method)
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Leadup

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• So far, we’ve talked about “describing” the distribution of U by both
its CDF (using the CDF method) and its PDF (using the Change of
Variable formula).

• We know that there is a third way of classifying distributions -
moment-generating functions (MGFs).
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MGFs

Definition (MGF)

The MGF of a random variable X, notated MX(t), is defined as

MX(t) := E[etX]

• Recall that this expectation is computed as a sum if X is discrete and
as an integral if X is continuous.
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Useful Result

Theorem

Given two random variables X and Y with MGFs MX(t) and MY(t),
respectively, that are both continuous in a small neighborhood
of the origin, then MX(t) = MY(t) implies that X and Y have the
same distribution.

• This theorem is essentially just a more formal way of saying “MGFs
uniquely determine random variables.” For example,

MX(t) = exp

{
2t+ 1

2t
2
}

⇐⇒ X ∼ N (2, 1)
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Useful Result

Theorem

Given a random variable Y with MGF MY(t), and U := aY + b for
constants a,b ∈ R,

MU(t) = ebtMY(at)
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Proof.

MU(t) := E[etU] [Definition of MGF]

:= E[et(aY+b)] [Definition of U]

:= E[e(at)Y+bt] [Algebra]

:= E[e(at)Y · ebt] [Algebra]

:= ebtE[e(at)Y] [Linearity of E]

:= ebtMY(at) [Definition of MGF]

• It turns out, we can use this theorem to (again) prove the closure of
the exponential distribution under multiplication!
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Example
• Once again, let Y ∼ Exp(θ), and let U = cY for a positive constant c.
• First recall that the MGF of the exponential distribution is

MY(t) =
{
(1 − θt)−1 if t < 1/θ
∞ otherwise

• Hence, by the previous theorem:

MU(t) = e0·t ·MY(ct) = 1 ·
{
(1 − θ(ct))−1 if (ct) < 1/θ
∞ otherwise

=

{
(1 − (cθ)t))−1 if t < 1/(cθ)
∞ otherwise

which is, as expected, the MGF of the Exp(cθ) distribution.
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Clicker Question!

Clicker Question 2

If Y ∼ Pois(λ) and U := cY for some positive constant c, what is
the distribution of U?
(A) Pois(cλ)
(B) Pois(c/λ)
(C) Pois(λ/c)
(D) None of the above
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Leadup

• Now, it may seem a little pointless to use the method of MGFs to
identify distributions of transformed random variables.

• I admit - the method of MGFs is not always the best choice, especially
if you’re looking for a density or distribution function. (If you’re only
interested in moments then the MGF method is a good shout, but you
can always use the LOTUS for that as well!)

• However, the method of MGFs really shines when we start taking
linear combinations of multiple random variables.

• We’ll talk about multivariate transformations more after the first
midterm, but let’s get a quick flavor of some of them now.
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Leadup

• Suppose two friends, Jack and Jill, each enter a separate checkout
lane at a grocery store.

• It makes sense to model their wait times as two separate random
variables: say, Y1 and Y2.

• That is, Y1 denotes one wait time (in minutes) and Y2 denotes another wait
time (in minutes).

• The random variable U := (Y1 + Y2) then represents the combined
wait times of Jack and Jill (in minutes).

• If, for example, Y1, Y2
i.i.d.∼ Exp(θ), then what distribution does U follow?
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Leadup
• As a bit of a spoiler, we could try to find the distribution of U using

the CDF method. (Doing so would involve computing a double
integral - these are the sorts of things we’ll be doing after MT01).

• But, instead, note:

MU(t) := E[etU]
= E[et(Y1+Y2)]

= E[etY1 · etY2]

= E[etY1] · E[etY2]

= MY1(t) ·MY2(t)
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Leadup

• So, plugging in the MGF of the Exp(θ) distribution, we have

MU(t) =
({

(1 − θt)−1 if t < 1/θ
∞ otherwise

)
·

({
(1 − θt)−1 if t < 1/θ
∞ otherwise

)

=

{
(1 − θt)−2 if t < 1/θ
∞ otherwise

which is the MGF of the Gamma(2, θ) distribution!
• So, we’ve shown that (Y1 + Y2) ∼ Gamma(2, θ).
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Useful Result

Theorem (Important MGF Formula)

Given a collection of independent random variables {Yi}ni=1, we
have

MU(t) =
n∏
i=1

MYi(ait) where U :=
n∑
i=1

aiYi
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Useful Result

Theorem (Closure of Gamma Distribution under Sums)

Given {Yi}ni=1 with Yi ∼ Gamma(αi, β) and constants {ai}ni=1, we
have ( n∑

i=1

Yi

)
∼ Gamma

( n∑
i=1

αi , β

)
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Proof
We use the formula from the previous slide:

M∑n
i=1 aiYi(t) =

n∏
i=1

MYi(ait)

Recall that the MGF of the Gamma(αi, β) distribution is given by

MYi(t) =
{
(1 − βt)−αi if t < 1/β
∞ otherwise

Hence, plugging in, we find:
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Proof

M∑n
i=1 aiYi(t) =

n∏
i=1

MYi(ait)

=
n∏
i=1

({
(1 − βt)−αi if t < 1/β
∞ otherwise

)

=

{
(1 − βt)−

∑n
i=1 αi if t < 1/β

∞ otherwise

which we recognize as the MGF of the Gamma(
∑n

i=1 αi, β) distribution.
Hence, we are done.
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Note

• Note: I am a bit of a stickler when it comes to ending proofs using the
MGF method.

• Specifically, I am adamant that you end with some sort of concluding
statement - don’t just leave the MGF without saying something about
the underlying distribution!

• For example, in the previous proof, notice how I ended with “which we
recognize as...”. Just make sure you end your MGF-related proofs with
something similar!
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Another Useful Result

Theorem (Closure of Normal Distribution under Linear Combinations)

Given a collection of independent random variables {Yi}ni=1 with
Yi ∼ N (µi , σ

2
i ) and constants {ai}ni=1, we have

U :=

( n∑
i=1

aiYi

)
∼ N

( n∑
i=1

aiµi ,
n∑
i=1

a2
i σ

2
i

)
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Proof

• I leave the proof to you.
• One word of extreme caution: we can get the expectation and

variance of U using 120A-related formulas.
• But, the normality of U is something that we cannot take for granted -

this is why we need to use the MGF method to complete the proof!
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Summary: Univariate Transformations

Goal

Given a random variable Y and a function g(), we seek to describe
the random variable U := g(Y).

• So far, we’ve accomplished this goal in three different ways:
• The CDF Method (Method of Distribution Functions)
• The Change of Variable formula (Method of Transformations)
• The MGF Method.
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CDF Method

(1) Write FU(u) := P(AU), where AU := {U ≤ u}.
(2) Find an equivalent expression for AU in terms of Y; call this AY .
(3) Compute P(AY) using the distribution of Y (which is known), to then

find the CDF of U.

• Remember: when carrying out step 3, drawing a picture can be
incredibly helpful!
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Change of Variable Formula
(1) Compute g−1(u) [remember that this can be done by solving the

equation u = g(y) for u in terms of y].
(2) Plug into the Change of Variable formula:

fU(u) = fY[g−1(y)] ·
∣∣∣∣ d
dug

−1(u)
∣∣∣∣

• Remember: this method only works when the transformation g(·) is
strictly monotonic over the support of Y!

• Also, a side note: so long as you are careful, the change of variable
formula will give you the support of U. But, in some cases, it might be
easier to find the support first (by drawing a picture), and then
incorporating that into your answer later.
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MGF Method

(1) Compute the MGF MU(t) of U by writing it in terms of the MGF MY(t) of
Y, and then recognize the resulting MGF as belonging to a particular
distribution.

• This works well for linear transformations and linear combinations of
random variables, but not too well for nonlinear transformations.

• Also, the MGF method won’t (typically) give you a PDF/CDF, so if you
really want the PDF/CDF of U you should use a different method
[unless you believe you will be able to recognize the resulting
distribution as one that has a name].
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Chalkboard Example

Example
The kinetic energy of a particle with mass m traveling at a velocity V is
given by

E =
1
2mV

2

Consider a particle selected at random, whose velocity is a random
variable V with density

fV(v) = 2v3e−v2 · 1{v>0}

Find the distribution of the kinetic energy of this particle once using the
CDF method and once using the Change of Variable formula.
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