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Recap

_co:l I

Given a population, from which random variables are assumed to
follow a distribution F with parameter 0, we seek to take random
samples ¥ := (Y,,---,Y,) from this population and use them to
estimate the true value of 6.

e Estimator 0,: a statistic being used to estimate 6.
* Alternatively, “a rule, often expressed as a formula, that tells how to calculate
the value of an estimate based on the measurements contained in a sample.”

» Estimate: an observed instance of our estimator.
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Recap "

* For instance, last lecture we talked about trying to estimate a
population mean .
* Given asample Yy, --- Y, from the population (which, again, has
mean p), we can consider several different estimators for s
® Hna = Yp=n" Z?:1 Yi
® finy = (Ya+Y3)/2
® finz:=Ys
* Since there are many potential estimators we can use to estimate a
parameter, we'd like to determine how to quantify how “well” an
estimator is performing.
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Recap:

* One metric we talked about was that of bias, which is the signed
distance between the expected value of our estimator and the true
parameter value:

Bias(b, , 0) := E[6,] — 0

* An unbiased estimator 6, of ¢ is one that satisfies E[§,] = 6.
® |.e., an unbiased estimator “gets it right on average.”
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Recap

e | also introduced an analogy our textbook uses, whereby we can think
of estimation as trying to hit a target with a revolver.

* The bullseye/target is the parameter we're trying to estimate; every
bullet we fire is an estimate, and our shooting prowess is essentially
the estimator.

e Assessing how well an estimator is performing is, then, akin to
assessing how good of a shot we are!
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Recap

e An unbiased estimator is akin to a marksman who, on average, hits
the target.

* More specifically, an unbiased estimator is akin to a marksperson
whose average location of many shots is right on the target.
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Unbiasedness

e This marksperson is an example
X of an unbiased estimator - the
average location of all of their
shots (depicted as blue x's) is
X « quite close to the target
bx (indicated in red).

x X X X X « But would we classify them as a
X “good” marksperson?
X Specifically, how would we
classify their performance in
comparison to...

X X
X x
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Unbiasedness

 This marksperson is an also

& “unbiased”.

e But doesn’t our intuition tell us
that they are performing
“better” than the marksperson
on the previous slide?
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Precision vs. Accuracy \J

* So, this perhaps indicates to us that unbiasedness alone, though a
decent critera to strive for, isn’t the whole picture.

* Indeed, this relates to the distinction between two very important
concepts in science (not just statistics): precision vs accuracy.

 Accuracy, more or less, corresponds to our notion of unbiasedness -
it refers to “on average, how close are we to the ground truth?”

e Precision is the other half of the story that we’re missing - it relates
to “on average, how much variability is there from trial to trial?”
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Precision vs. Accuracy

ACCURACY
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Precision

* As was hinted at before, precision is linked (in the context of
estimation) to the variance of a given estimator.

e Not only would we like our estimator to get the right value of 6 on
average, we'd also like to be fairly certain that on any particular draw
we're close to the true value!
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Precision

L. U]
8, O
0 ” 0 -
El8,] El8,]
UNBIASED; UNBIASED;
LOW VARIANCE HIGH VARIANCE

UC SANTA BARBARA
Department of Statistics
and Applied Probability

Topic 3 | Ethan P. Marzban  PSTAT 120B, Sum. Sess. A, 2024
Page 13/37



-

&
Ideal Estimator "~

e So, based on everything we've discussed so far, it seems as though an
“ideal” estimator is one that is both unbiased and also possesses a
small variance.

e Thankfully, we have a metric that is able to simultaneously assess a
given estimator’s bias and variance - this metric is called the
mean square error (MSE).

Deﬁnition (MSE)

The mean square error (MSE) of an estimator 5,, for a parameter
6 is defined to be

MSE(@, , 6) = E Ré,, - 9)1

=
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Bias-Variance Decomposition

Theorem (Bias-Variance Decomposition)

Given an estimator 6, for a parameter ¢, we have that

—~ ~ 2 ~
MSE(6,, 0) = [Bias(@,,,@)] + Var(d,)

e We'll save the proof for later.
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Bias-Variance Decomposition

Theorem (MSE of an Unbiased Estimator)

Given an unbiased estimator 5,, for a parameter 6, we have that

MSE (6, 6) = Var(6,)

 This follows directly from the Bias-Variance Decomposition, along
with the definition of unbiasedness.
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Example

Example
iid.

LetY,---,Y, =" Unif[o, §] for some deterministic constant 6 > o.
Compute the mean square error of using Y, as an estimator for 6.
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Solutions

e When trying to compute the MSE of a given estimator, it's usually a
good idea to start off by computing the expected value of the
estimator.

e We know that the expected value of the sample mean is the
population mean, which in this case is (¢ + 0)/2 = 6/2 [we get this
from the formula for the expectation of the Uniform distribution].

Hence,
> 0
E[Yn] =3
2
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Solutions

e Let’'s now compute the bias of using Y, as an estimator for 6. By

definition,
o - 0 0
Bias(Yn,0) = E[Y,] — 0 = = 0 = -

e Finally, we can compute the variance of Y,:
92
Var(Y,) (E) 62

Var(Yn) = n _ n _ 12n
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Solutions

* So, by the Bias-Variance Decomposition,
— ~ 2 ~
MSE(Y,, 0) = [Bias(&n,e)] + Var(6,)
0\> 6>  6*(3n+1
()5

2 2n 12n
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Clicker Question

Clicker Question 1

Which of the following statements is true?

(A) An ideal estimator has a very large MSE

(B) An ideal estimator has an MSE that is very close to o
(C) An ideal estimator has an MSE that is very negative
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Clicker Question

Clicker Question 2

ConsiderY,,--- .Y, [ N (u, 1), and further consider the following
two estimators of s

~ Y1 + Y2 ~ v/
fina i= ; in2 = Yn
2
In terms of MSE, which (if either) estimator performs better?
(A) in.1
(B) Fin

(C) The two estimators perform equally well in terms of MSE
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Result

Given an i.i.d. sample {Y;}"_ from a distribution with unknown

variance o2, then

is an unbiased estimator for 2.
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Example

Example

GivenY,,--- .Y, - N(0, 0?) for some unknown o2 > 0, compute the MSE

of using

as an estimator for 2.
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Solutions

* Since S? is an unbiased estimator for o2 (by the previous theorem),

we know (by the theorem pertaining to the MSE of an unbiased
estimator) that MSE(S?, 02) = Var(S?).

* By the result pertaining to the sampling distribution of S2 (mentioned
a few lectures ago), we have

n—1 n—1
= S2 ~ x?_, ~ Gamma <T : 2)
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Intersticial Result

Theorem (Closure of Gamma Distribution under Scalar Multiplication)

Given Y ~ Gamma(x, 3) and U := (cY) for some ¢ > 0, we have
that U ~ Gamma(q, ¢5).

Proof.

Use the MGF method. ]
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Solutions

n—1 n—1
S2 ~ Gamma (— : 2)
02 2
) n—1 o?
— S;, ~ Gamma , 2
2 n—1
n—1 a2 \°
= Var(S3)=|—) (2"
2 n—1
n-—1 Lot 20%

2 (n—1)2 n-—1
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Other Assessments
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Leadup

e MSE is a very useful metric for measuring how well a given estimator
is performing!

* Indeed, as we've seen, it even allows us to compare the performance
of two estimators, by simply comparing their MSE’s (remember the
result of our clicker questions!)

e But, there are other properties we might seek to impose on our

estimators.
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Leadup %

e Recall last lecture that | introduced the notion of an asymptotically
unbiased estimator.

* As a review, an estimator 8, for a parameter 4 is said to be asymptotically
unbiased if R
lim Bias(f,,0) =0

n—oo

* Indeed, the field of asymptotics is the subfield of statistics dedicated
to studying what happens as our sample size (n) becomes very large.

e Borrowing from asymptotics, we may seek to impose certain
large-sample properties we would like our “good” estimators to obey.
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Disclaimer

e Disclaimer - things are about to get pretty math-y.

* I'll do my best to translate these results into words - | urge you to
think through these definitions carefully on your own!
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Consistency

Definition (Consistent Estimator)

An estimator 5,, is said to be a consistent estimator for ¢ if
0, 50

That is, if either of the two equivalent conditions hold for any
e>0:

nILrEOIP(W,, —0l>¢)=0

lim P(|f, — 6] <) =1
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Interpretation

e Okay, what the heck is this saying???
e Let's parse through the first definition:

lim P(|6, — 6] >¢) =0

n—oo

* What is the event {|d, — 6] > ¢} saying?
e Well, |§,, — 6| is essentially the distance between 0, and 4.

e Hence, the event {|0, — 6| > ¢} is essentially just the event “g, is very
far away from 6.”
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Interpretation

* Therefore, P(|0, — 6] > ¢) is just the probability that 6, is very far
away from 6.

e What the definition of consistency is saying is: this probability goes
to zero as our sample size increases.

e Equivalently, lP(@,, — 6| > ¢) is just the probability that O, is very close
to 4.

e The definition of consistency also asserts that this probability goes to
1as our sample size increases.
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Interpretation

e So, all in all, consistency is saying: as we keep taking samples of
larger and larger size, we become more and more certain that 6, is
very close to 6.

e That sounds like a pretty desirable property for an estimator to have,
doesn't it?
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Consistent and Unbiased

N0 INU IAU
3, 3, [ 3, ﬂ
o 6 0
>
INCREASING n

* This is a (cartoon) example of an estimator that is unbiased and
consistent.

* There do exist consistent estimators that are biased:
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Consistent yet Biased

AU AU
6, Oy

J U

0

INCREASING n

* You can (and will) show that S, the sample standard deviation, is a

biased yet consistent estimator for o, the population standard
deviation.

e Fun fact - the background of our course logo contains an example of
a biased yet consistent estimator!
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