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Recap

Goal

Given a population, from which random variables are assumed to
follow a distribution F with parameter θ, we seek to take random
samples Y⃗ := (Y1, · · · , Yn) from this population and use them to
estimate the true value of θ.

• Estimator θ̂n: a statistic being used to estimate θ.
• Alternatively, “a rule, often expressed as a formula, that tells how to calculate

the value of an estimate based on the measurements contained in a sample.”
• Estimate: an observed instance of our estimator.

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 2/37



Recap

• For instance, last lecture we talked about trying to estimate a
population mean µ.

• Given a sample Y1, · · · , Yn from the population (which, again, has
mean µ), we can consider several different estimators for µ:

• µ̂n,1 := Yn := n−1 ∑n
i=1 Yi

• µ̂n,2 := (Y1 + Y3)/2
• µ̂n,3 := Y5

• Since there are many potential estimators we can use to estimate a
parameter, we’d like to determine how to quantify how “well” an
estimator is performing.

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 3/37



Recap:

• One metric we talked about was that of bias, which is the signed
distance between the expected value of our estimator and the true
parameter value:

Bias(θ̂n , θ) := E[θ̂n]− θ

• An unbiased estimator θ̂n of θ is one that satisfies E[θ̂n] = θ.
• I.e., an unbiased estimator “gets it right on average.”
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Bias
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Recap

• I also introduced an analogy our textbook uses, whereby we can think
of estimation as trying to hit a target with a revolver.

• The bullseye/target is the parameter we’re trying to estimate; every
bullet we fire is an estimate, and our shooting prowess is essentially
the estimator.

• Assessing how well an estimator is performing is, then, akin to
assessing how good of a shot we are!
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Recap

• An unbiased estimator is akin to a marksman who, on average, hits
the target.

• More specifically, an unbiased estimator is akin to a marksperson
whose average location of many shots is right on the target.
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Unbiasedness
• This marksperson is an example

of an unbiased estimator - the
average location of all of their
shots (depicted as blue ×’s) is
quite close to the target
(indicated in red).

• But would we classify them as a
“good” marksperson?
Specifically, how would we
classify their performance in
comparison to...
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Unbiasedness

• This marksperson is an also
“unbiased”.

• But doesn’t our intuition tell us
that they are performing
“better” than the marksperson
on the previous slide?
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Precision vs. Accuracy

• So, this perhaps indicates to us that unbiasedness alone, though a
decent critera to strive for, isn’t the whole picture.

• Indeed, this relates to the distinction between two very important
concepts in science (not just statistics): precision vs accuracy.

• Accuracy, more or less, corresponds to our notion of unbiasedness -
it refers to “on average, how close are we to the ground truth?”

• Precision is the other half of the story that we’re missing - it relates
to “on average, how much variability is there from trial to trial?”
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Precision vs. Accuracy
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Precision

• As was hinted at before, precision is linked (in the context of
estimation) to the variance of a given estimator.

• Not only would we like our estimator to get the right value of θ on
average, we’d also like to be fairly certain that on any particular draw
we’re close to the true value!

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 12/37



Precision
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Ideal Estimator
• So, based on everything we’ve discussed so far, it seems as though an

“ideal” estimator is one that is both unbiased and also possesses a
small variance.

• Thankfully, we have a metric that is able to simultaneously assess a
given estimator’s bias and variance - this metric is called the
mean square error (MSE).

Definition (MSE)

The mean square error (MSE) of an estimator θ̂n for a parameter
θ is defined to be

MSE(θ̂n , θ) := E
[(

θ̂n − θ
)2
]
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Bias-Variance Decomposition

Theorem (Bias-Variance Decomposition)

Given an estimator θ̂n for a parameter θ, we have that

MSE(θ̂n, θ) =
[
Bias(θ̂n, θ)

]2
+ Var(θ̂n)

• We’ll save the proof for later.
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Bias-Variance Decomposition

Theorem (MSE of an Unbiased Estimator)

Given an unbiased estimator θ̂n for a parameter θ, we have that

MSE(θ̂n, θ) = Var(θ̂n)

• This follows directly from the Bias-Variance Decomposition, along
with the definition of unbiasedness.
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Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Unif[0, θ] for some deterministic constant θ > 0.
Compute the mean square error of using Yn as an estimator for θ.
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Solutions

• When trying to compute the MSE of a given estimator, it’s usually a
good idea to start off by computing the expected value of the
estimator.

• We know that the expected value of the sample mean is the
population mean, which in this case is (θ + 0)/2 = θ/2 [we get this
from the formula for the expectation of the Uniform distribution].
Hence,

E[Yn] =
θ

2
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Solutions

• Let’s now compute the bias of using Yn as an estimator for θ. By
definition,

Bias(Yn, θ) = E[Yn]− θ =
θ

2 − θ = −θ

2
• Finally, we can compute the variance of Yn:

Var(Yn) =
Var(Y1)

n =

(
θ2

12

)
n =

θ2

12n
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Solutions

• So, by the Bias-Variance Decomposition,

MSE(Yn, θ) =
[
Bias(θ̂n, θ)

]2
+ Var(θ̂n)

=

(
−θ

2

)2

+
θ2

12n =
θ2(3n+ 1)

12n
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Clicker Question

Clicker Question 1

Which of the following statements is true?
(A) An ideal estimator has a very large MSE
(B) An ideal estimator has an MSE that is very close to 0
(C) An ideal estimator has an MSE that is very negative
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Clicker Question

Clicker Question 2

Consider Y1, · · · , Yn
i.i.d.∼ N (µ, 1), and further consider the following

two estimators of µ:

µ̂n,1 :=
Y1 + Y2

2 ; µ̂n,2 = Yn

In terms of MSE, which (if either) estimator performs better?
(A) µ̂n,1

(B) µ̂n,2

(C) The two estimators perform equally well in terms of MSE
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Result

Theorem (Sample Variance is an U.B.E. for Population Variance)

Given an i.i.d. sample {Yi}ni=1 from a distribution with unknown
variance σ2, then

S2
n :=

1
n− 1

n∑
i=1

(Yi − Yn)2

is an unbiased estimator for σ2.
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Example

Example
Given Y1, · · · , Yn

i.i.d.∼ N (0, σ2) for some unknown σ2 > 0, compute the MSE
of using

S2
n :=

1
n− 1

n∑
i=1

(Yi − Yn)2

as an estimator for σ2.
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Solutions

• Since S2
n is an unbiased estimator for σ2 (by the previous theorem),

we know (by the theorem pertaining to the MSE of an unbiased
estimator) that MSE(S2

n, σ
2) = Var(S2

n).
• By the result pertaining to the sampling distribution of S2

n (mentioned
a few lectures ago), we have

n− 1
σ2 S2

n ∼ χ2
n−1 ∼ Gamma

(
n− 1

2 , 2
)
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Intersticial Result

Theorem (Closure of Gamma Distribution under Scalar Multiplication)

Given Y ∼ Gamma(α, β) and U := (cY) for some c > 0, we have
that U ∼ Gamma(α, cβ).

Proof.
Use the MGF method.
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Solutions

n− 1
σ2 S2

n ∼ Gamma
(
n− 1

2 , 2
)

=⇒ S2
n ∼ Gamma

(
n− 1

2 , 2 · σ2

n− 1

)
=⇒ Var(S2

n) =

(
n− 1

2

)
·
(

2 · σ2

n− 1

)2

=
n− 1

2 · 4σ4

(n− 1)2 =
2σ4

n− 1
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Other Assessments
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Leadup

• MSE is a very useful metric for measuring how well a given estimator
is performing!

• Indeed, as we’ve seen, it even allows us to compare the performance
of two estimators, by simply comparing their MSE’s (remember the
result of our clicker questions!)

• But, there are other properties we might seek to impose on our
estimators.
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Leadup

• Recall last lecture that I introduced the notion of an asymptotically
unbiased estimator.

• As a review, an estimator θ̂n for a parameter θ is said to be asymptotically
unbiased if

lim
n→∞

Bias(θ̂n, θ) = 0

• Indeed, the field of asymptotics is the subfield of statistics dedicated
to studying what happens as our sample size (n) becomes very large.

• Borrowing from asymptotics, we may seek to impose certain
large-sample properties we would like our “good” estimators to obey.
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Disclaimer

• Disclaimer - things are about to get pretty math-y.
• I’ll do my best to translate these results into words - I urge you to

think through these definitions carefully on your own!
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Consistency

Definition (Consistent Estimator)

An estimator θ̂n is said to be a consistent estimator for θ if

θ̂n
p−→ θ

That is, if either of the two equivalent conditions hold for any
ε > 0:

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

lim
n→∞

P(|θ̂n − θ| < ε) = 1
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Interpretation

• Okay, what the heck is this saying???
• Let’s parse through the first definition:

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

• What is the event {|θ̂n − θ| ≥ ε} saying?
• Well, |θ̂n − θ| is essentially the distance between θ̂n and θ.
• Hence, the event {|θ̂n − θ| ≥ ε} is essentially just the event “θ̂n is very

far away from θ.”
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Interpretation

• Therefore, P(|θ̂n − θ| ≥ ε) is just the probability that θ̂n is very far
away from θ.

• What the definition of consistency is saying is: this probability goes
to zero as our sample size increases.

• Equivalently, P(|θ̂n − θ| ≥ ε) is just the probability that θ̂n is very close
to θ.

• The definition of consistency also asserts that this probability goes to
1 as our sample size increases.
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Interpretation

• So, all in all, consistency is saying: as we keep taking samples of
larger and larger size, we become more and more certain that θ̂n is
very close to θ.

• That sounds like a pretty desirable property for an estimator to have,
doesn’t it?
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Consistent and Unbiased

• This is a (cartoon) example of an estimator that is unbiased and
consistent.

• There do exist consistent estimators that are biased:
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Consistent yet Biased

• You can (and will) show that Sn, the sample standard deviation, is a
biased yet consistent estimator for σ, the population standard
deviation.

• Fun fact - the background of our course logo contains an example of
a biased yet consistent estimator!
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