

Topic 3: Estimation

Ethan P. Marzban University of California, Santa Barbara PSTAT 120B

Outline

1. [Unbiasedness, and MSE](#page-2-0)

2. [Other Assessments](#page-29-0)

[Unbiasedness, and MSE](#page-2-0)

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 1/37

Recap

Goal

Given a population, from which random variables are assumed to follow a distribution $\mathcal F$ with parameter θ , we seek to take random samples $\vec{\bm{Y}} := (Y_1, \cdots, Y_n)$ from this population and use them to estimate the true value of θ .

- **Estimator** $\widehat{\theta}_n$: a statistic being used to estimate θ .
	- Alternatively, "a rule, often expressed as a formula, that tells how to calculate the value of an estimate based on the measurements contained in a sample."
- **Estimate**: an observed instance of our estimator.

Recap

- For instance, last lecture we talked about trying to estimate a population mean μ .
- $\bullet\,$ Given a sample Y_1,\cdots,Y_n from the population (which, again, has mean μ), we can consider several different estimators for μ :

$$
\begin{array}{ll} \bullet & \widehat{\mu}_{n,1} := \overline{Y}_n := n^{-1} \sum_{i=1}^n Y_i \\ \bullet & \widehat{\mu}_{n,1} := (Y + Y)/2 \end{array}
$$

$$
\widehat{\mu}_{n,2} := (Y_1 + Y_3)/2
$$

\n
$$
\widehat{\mu}_{n,2} := Y_2
$$

- $\hat{\mu}_{n,3} := Y_5$
- Since there are many potential estimators we can use to estimate a parameter, we'd like to determine how to quantify how "well" an estimator is performing.

Recap:

• One metric we talked about was that of **bias**, which is the signed distance between the expected value of our estimator and the true parameter value:

$$
\text{Bias}(\widehat{\theta}_n, \theta) := \mathbb{E}[\widehat{\theta}_n] - \theta
$$

- An **unbiased** estimator $\widehat{\theta}_n$ of θ is one that satisfies $\mathbb{E}[\widehat{\theta}_n] = \theta$.
	- I.e., an unbiased estimator "gets it right on average."

Department of Statistics and Applied Probability

Page 5/37

Recap

- I also introduced an analogy our textbook uses, whereby we can think of estimation as trying to hit a target with a revolver.
- The bullseye/target is the parameter we're trying to estimate; every bullet we fire is an estimate, and our shooting prowess is essentially the estimator.
- Assessing how well an estimator is performing is, then, akin to assessing how good of a shot we are!

- An unbiased estimator is akin to a marksman who, on average, hits the target.
- More specifically, an unbiased estimator is akin to a marksperson whose average location of many shots is right on the target.

Unbiasedness

- This marksperson is an example of an unbiased estimator - the average location of all of their shots (depicted as blue \times 's) is quite close to the target (indicated in red).
- But would we classify them as a "*good*" marksperson? Specifically, how would we classify their performance in comparison to...

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 8/37

- This marksperson is an *also* "unbiased".
- But doesn't our intuition tell us that they are performing "better" than the marksperson on the previous slide?

Precision vs. Accuracy

- So, this perhaps indicates to us that unbiasedness alone, though a decent critera to strive for, isn't the whole picture.
- Indeed, this relates to the distinction between two very important concepts in science (not just statistics): **precision** vs **accuracy**.
- Accuracy, more or less, corresponds to our notion of unbiasedness it refers to "on average, how close are we to the ground truth?"
- *Precision* is the other half of the story that we're missing it relates to "on average, how much *variability* is there from trial to trial?"

Precision vs. Accuracy

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 11/37

Precision

- As was hinted at before, *precision* is linked (in the context of estimation) to the *variance* of a given estimator.
- Not only would we like our estimator to get the right value of θ on average, we'd also like to be fairly certain that on any particular draw we're close to the true value!

Precision

Ideal Estimator

- So, based on everything we've discussed so far, it seems as though an "ideal" estimator is one that is both unbiased and also possesses a small variance.
- Thankfully, we have a metric that is able to simultaneously assess a given estimator's bias and variance - this metric is called the **mean square error** (MSE).

Definition (MSE)

The mean square error (MSE) of an estimator $\widehat{\theta}_n$ for a parameter θ is defined to be

$$
\mathsf{MSE}(\widehat{\theta}_n, \theta) := \mathbb{E}\left[\left(\widehat{\theta}_n - \theta\right)^2\right]
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 14/37

Bias-Variance Decomposition

Theorem (Bias-Variance Decomposition)

Given an estimator $\widehat{\theta}_n$ for a parameter θ , we have that $\mathsf{MSE}(\widehat{\theta}_{n}, \theta) = \left[\mathsf{Bias}(\widehat{\theta}_{n}, \theta)\right]^{2} + \mathsf{Var}(\widehat{\theta}_{n})$

• We'll save the proof for later.

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 15/37

Bias-Variance Decomposition

Theorem (MSE of an Unbiased Estimator)

Given an unbiased estimator $\widehat{\theta}_n$ for a parameter θ , we have that $MSE(\widehat{\theta}_n, \theta) = Var(\widehat{\theta}_n)$

• This follows directly from the Bias-Variance Decomposition, along with the definition of unbiasedness.

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 16/37

Example

Example Let $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim}$ Unif[0, θ] for some deterministic constant $\theta > 0$. Compute the mean square error of using \overline{Y}_n as an estimator for θ .

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 17/37

- When trying to compute the MSE of a given estimator, it's usually a good idea to start off by computing the expected value of the estimator.
- We know that the expected value of the sample mean is the population mean, which in this case is $(\theta + o)/2 = \theta/2$ [we get this from the formula for the expectation of the Uniform distribution]. Hence,

$$
\mathbb{E}[\overline{Y}_n]=\frac{\theta}{2}
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 18/37

• Let's now compute the bias of using \overline{Y}_n as an estimator for θ . By definition,

Bias
$$
(\overline{Y}_n, \theta)
$$
 = $\mathbb{E}[\overline{Y}_n] - \theta = \frac{\theta}{2} - \theta = -\frac{\theta}{2}$

• Finally, we can compute the variance of \overline{Y}_n :

$$
Var(\overline{Y}_n) = \frac{Var(Y_1)}{n} = \frac{\left(\frac{\theta^2}{12}\right)}{n} = \frac{\theta^2}{12n}
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 19/37

• So, by the Bias-Variance Decomposition,

$$
MSE(\overline{Y}_n, \theta) = \left[Bias(\widehat{\theta}_n, \theta)\right]^2 + Var(\widehat{\theta}_n)
$$

= $\left(-\frac{\theta}{2}\right)^2 + \frac{\theta^2}{12n} = \frac{\theta^2(3n + 1)}{12n}$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 20/37

Clicker Question

Clicker Question 1

Which of the following statements is true? (A) An ideal estimator has a very large MSE (B) An ideal estimator has an MSE that is very close to 0 (C) An ideal estimator has an MSE that is very negative

Clicker Question

Clicker Question 2

Consider $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$, and further consider the following two estimators of μ :

$$
\widehat{\mu}_{n,1}:=\frac{Y_1+Y_2}{2};\qquad \widehat{\mu}_{n,2}=\overline{Y}_n
$$

In terms of MSE, which (if either) estimator performs better? (A) $\hat{\mu}_{n,1}$ (B) $\hat{\mu}$ _n, (C) The two estimators perform equally well in terms of MSE

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 22/37

Result

Theorem (Sample Variance is an U.B.E. for Population Variance)

Given an i.i.d. sample $\{Y_i\}_{i=1}^n$ $_{i=1}^n$ from a distribution with unknown variance σ^2 , then

$$
S_n^2:=\frac{1}{n-1}\sum_{i=1}^n (Y_i-\overline{Y}_n)^2
$$

is an unbiased estimator for σ^2 .

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 23/37

Example

Example

Given $Y_1,\cdots,Y_n\stackrel{\textup{i.i.d.}}{\sim}\mathcal{N}(\textup{O},\sigma^2)$ for some unknown $\sigma^2>\textup{O}$, compute the MSE of using

$$
S_n^2:=\frac{1}{n-1}\sum_{i=1}^n (Y_i-\overline{Y}_n)^2
$$

as an estimator for σ^2 .

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 24/37

- \bullet Since S_n^2 is an unbiased estimator for σ^2 (by the previous theorem), we know (by the theorem pertaining to the MSE of an unbiased estimator) that $\mathsf{MSE}(S_n^2, \sigma^2) = \mathsf{Var}(S_n^2)$.
- \bullet By the result pertaining to the sampling distribution of S^2_n (mentioned a few lectures ago), we have

$$
\frac{n-1}{\sigma^2}S_n^2 \sim \chi^2_{n-1} \sim \text{Gamma}\left(\frac{n-1}{2}\,,\,2\right)
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 25/37

Intersticial Result

Theorem (Closure of Gamma Distribution under Scalar Multiplication)

Given *Y* \sim Gamma (α, β) and *U* := (*cY*) for some *c* $>$ 0, we have that $U \sim$ Gamma $(\alpha, c\beta)$.

Proof. Use the MGF method.

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 26/37

$$
\frac{n-1}{\sigma^2} S_n^2 \sim \text{Gamma}\left(\frac{n-1}{2}, 2\right)
$$
\n
$$
\implies S_n^2 \sim \text{Gamma}\left(\frac{n-1}{2}, 2 \cdot \frac{\sigma^2}{n-1}\right)
$$
\n
$$
\implies \text{Var}(S_n^2) = \left(\frac{n-1}{2}\right) \cdot \left(2 \cdot \frac{\sigma^2}{n-1}\right)^2
$$
\n
$$
= \frac{n-1}{2} \cdot \frac{4\sigma^4}{(n-1)^2} = \frac{2\sigma^4}{n-1}
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 27/37

[Other Assessments](#page-29-0)

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 28/37

Leadup

- MSE is a very useful metric for measuring how well a given estimator is performing!
- Indeed, as we've seen, it even allows us to compare the performance of two estimators, by simply comparing their MSE's (remember the result of our clicker questions!)
- But, there are other properties we might seek to impose on our estimators.

Leadup

- Recall last lecture that I introduced the notion of an *asymptotically* unbiased estimator.
	- As a review, an estimator $\widehat{\theta}_n$ for a parameter θ is said to be asymptotically unbiased if

$$
\lim_{n\to\infty}\mathsf{Bias}(\widehat{\theta}_n,\theta)=o
$$

- Indeed, the field of **asymptotics** is the subfield of statistics dedicated to studying what happens as our sample size (*n*) becomes very large.
- Borrowing from asymptotics, we may seek to impose certain *large-sample* properties we would like our "good" estimators to obey.

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 30/37

Disclaimer

- Disclaimer things are about to get pretty math-y.
- I'll do my best to translate these results into words I urge you to think through these definitions carefully on your own!

Consistency

Definition (Consistent Estimator)

An estimator $\widehat{\theta}_n$ is said to be a **consistent** estimator for θ if

$$
\widehat{\theta}_n \stackrel{p}{\longrightarrow} \theta
$$

That is, if either of the two equivalent conditions hold for any $\varepsilon > 0$:

$$
\lim_{n \to \infty} \mathbb{P}(|\widehat{\theta}_n - \theta| \ge \varepsilon) = \mathsf{0}
$$
\n
$$
\lim_{n \to \infty} \mathbb{P}(|\widehat{\theta}_n - \theta| < \varepsilon) = \mathsf{1}
$$

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 32/37

Interpretation

- Okay, what the heck is this saying???
- Let's parse through the first definition:

$$
\lim_{n\to\infty}\mathbb{P}(|\widehat{\theta}_n-\theta|\geq \varepsilon)=\mathsf{O}
$$

- What is the event $\{|\widehat{\theta}_n \theta| \geq \varepsilon\}$ saying?
- Well, $|\widehat{\theta}_n \theta|$ is essentially the distance between $\widehat{\theta}_n$ and θ .
- Hence, the event $\{|\widehat{\theta}_n \theta| \geq \varepsilon\}$ is essentially just the event " $\widehat{\theta}_n$ is very far away from θ ."

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 33/37

Interpretation

- Therefore, $\mathbb{P}(|\widehat{\theta}_n \theta| > \varepsilon)$ is just the probability that $\widehat{\theta}_n$ is very far away from θ .
- What the definition of consistency is saying is: this probability goes to zero as our sample size increases.
- Equivalently, $\mathbb{P}(|\widehat{\theta}_n \theta| \geq \varepsilon)$ is just the probability that $\widehat{\theta}_n$ is very close to θ .
- The definition of consistency also asserts that this probability goes to 1 as our sample size increases.

Interpretation

- So, all in all, consistency is saying: as we keep taking samples of larger and larger size, we become more and more *certain* that $\widehat{\theta}_n$ is very close to θ .
- That sounds like a pretty desirable property for an estimator to have, doesn't it?

Consistent and Unbiased

- This is a (cartoon) example of an estimator that is unbiased *and* consistent.
- There do exist consistent estimators that are biased:

Consistent yet Biased

- You can (and will) show that *Sn*, the sample standard deviation, is a biased vet consistent estimator for σ , the population standard deviation.
- Fun fact the background of our course logo contains an example of a biased yet consistent estimator!

[Topic 3](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 37/37