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Consistency

Definition (Consistent Estimator)

An estimator θ̂n is said to be a consistent estimator for θ if

θ̂n
p−→ θ

That is, if either of the two equivalent conditions hold for any
ε > 0:

lim
n→∞

P(|θ̂n − θ| ≥ ε) = 0

lim
n→∞

P(|θ̂n − θ| < ε) = 1
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Interpretation

• Recall the interpretation of the definition of consistency: as our
sample size gets larger, we want to be more and more certain that our
estimator θ̂n remains close to θ.

• Also, recall that it’s possible for an estimator to be biased (for a finite
sample size) but also consistent.

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 3/49



Bias and Consistency
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Convergence in Probability

• By the way, let me quickly explain the notation p−→.
• We use this notation to indicate consistency, because consistency is

actually related to something known as convergence in probability
(which applies to any arbitrary sequence of random variables - not
just estimators!)
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Convergence in Probability

Definition (Convergence in Probability)

A sequence {Xn}n≥0 of random variables is said to
converge in probability to a constant x if for every ε > 0
either of the equivalent conditions hold:

lim
n→∞

P(|Xn − x| ≥ ε) = 0

lim
n→∞

P(|Xn − x| < ε) = 1

Convergence in probability is notated as

Xn
p−→ x
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Weak Law of Large Numbers

Theorem (Weak Law of Large Numbers)

Given an i.i.d. sample {Yi}ni=1 from a population with (unknown)
mean µ and finite variance σ2 < ∞,

Yn
p−→ µ

• In the language of convergence in probability, the WLLN states that
the sample mean converges in probability to the population mean.

• In the language of consistency, the WLLN asserts that the sample
mean is a consistent estimator for the population mean.
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Proof
• What we want to show is that, for any ε > 0,

lim
n→∞

P(|Yn − µ| ≥ ε) = 0

• First note that, by virtue of being a probability,

0 ≤ P(|Yn − µ| ≥ ε)

• Additionally, by Chebyshev’s Inequality,

P(|Yn − µ| ≥ ε) ≤ Var(Yn)
ε2 =

σ2

nε2
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Proof
• So, combining these two statements, we have

0 ≤ P(|Yn − µ| ≥ ε) ≤ σ2

nε2

• Note that [σ2/(nε2)] → 0 as n→ ∞; additionally, 0 → 0 as n→ ∞.
Hence, by the Squeeze Theorem (from Calculus),

lim
n→∞

P(|Yn − µ| ≥ ε) = 0

which, by definition, implies

Yn
p−→ µ
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Chalkboard Example

Example
Given an i.i.d. sample {Yi}ni=1 from a distribution with mean µ and finite
variance σ2 < ∞, we define the second sample moment to be

M2,n :=
1
n

n∑
i=1

Y2
i

Does M2,n converge in probability to a constant? If so, find that constant.
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Result

Theorem (Consistency and Unbiasedness, I)

Consider an unbiased estimator θ̂n for θ. Then, θ̂n is a consistent
estimator for θ if limn→∞ Var(θ̂n) = 0.

• The proof of this theorem utilizes tools similar to those used in the
proof of the WLLN; I encourage you to walk through it on your own.

• Also, if we want to use this theorem to prove consistency, we must be
careful to check that our estimator is unbiased! That is, if we have a
biased estimator whose variance goes to 0 as n→ ∞, we CANNOT
definitively conclude that it is a consistent estimator.
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Chalkboard Example

Example
Consider an i.i.d. sample {Yi}ni=1 from a population with mean µ and finite
variance σ2 < ∞. Show that S2

n, the sample variance, is a consistent
estimator for σ2.
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Properties

Theorem (Properties of Convergence in Probability)

Suppose that Xn
p−→ x and Yn

p−→ y. Then:
(I) (Xn + Yn)

p−→ (x + y)
(II) (Xn · Yn)

p−→ (x · y)
(III) (Xn/Yn)

p−→ (x/y) provided that y ̸= 0
(IV) Continuous Mapping Theorem: g(Xn)

p−→ g(x) for any
real-valued function.
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Example

Example
Consider an i.i.d. sample {Yi}ni=1 from a population with mean µ and finite
variance σ2 < 0. Propose a consistent estimator for µ2, and show
explicitly that your estimator is consistent.
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Leadup

• That’s pretty much all I want to say on consistency and convergence
in probability.

• If you are planning on pursuing a career in the Actuarial Sciences or
Financial Mathematics, you will most certainly be using the notion of
convergence in probability a lot. (Even Data Scientists find
themselves faced with questions of consistency from time to time!)

• I would like to take some time and mention that there is another type
of convergence...
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Convergence in Distribution
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Convergence in Distribution

Definition (Convergence in Distribution)

Consider a sequence {Xn}n≥1 of random variables, where FXn(·) de-
notes the CDF of Xn for any n ∈ N. Consider another random vari-
able X with CDF FX(·): we say that Xn converges in distribution to
X, notated Xn ⇝ X if

lim
n→∞

FXn(x) = FX(x)

for every x such that both FX(n)(x) and FX(x) are continuous.
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Convergence in Distribution

• Basically, if the distributions of Xn as n→ ∞ get closer and closer to
the distribution of X, we say that Xn converges in distribution to X.

• If the distribution of X has a familiar name, it’s common to replace X
in the notation Xn ⇝ X with the name of the distribution. For
example, you might see things like

Xn ⇝ N (0, 1)

to mean
lim
n→∞

FXn(x) = Φ(x) :=
∫ x

−∞

1√
2π
e−z2/2 dz
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Convergence in Distribution

• As a concrete example, consider a collection of independent random
variables {Xn} where

fXn(x) =
nn/2

(n− 1)!(x +
√
n)n−1e−(x

√
n+u) · 1{x≥−

√
n}

• Don’t worry about where I got this from - it’ll actually make sense in a minute!
• Though this distribution’s CDF doesn’t have a simple closed-form

expression, we can use a computer software to plot it.
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Convergence in Distribution
• For instance, the CDF of X1 looks like this:
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Convergence in Distribution
• The CDF of X2 looks like this:
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Convergence in Distribution
• The CDF of X3 looks like this:
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Convergence in Distribution
• The CDF of X4 looks like this:
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Convergence in Distribution
• The CDF of X10 looks like this:
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Convergence in Distribution
• The CDF of X15 looks like this:
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Convergence in Distribution

• As n→ ∞, doesn’t it look like the blue curve gets closer and closer to
the red dashed curve?

• This is exactly what we mean by convergence in distribution: the
sequence of random variables {Xn} is converging in distribution to
the distribution whose CDF is given by the red dashed curve.

• If you’re curious, the red dashed CDF is actually just Φ(·).
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Central Limit Theorem

Theorem (Central Limit Theorem)

Given an i.i.d. collection {Yi}ni=1 of random variables with E[Yi] =
µ and Var(Yi) = σ2 < ∞, define

Un :=
√
n(Yn − µ)

σ
=

(
∑n

i=1 Yi)− nµ
σ
√
n

Then Un ⇝ N (0, 1). That is,

lim
n→∞

P(Un ≤ x) =
∫ x

−∞

1√
2π
e−z2/2 dz
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Central Limit Theorem

• By the way, this is how I got the peculiar-looking density from before!
• Specifically, I set Y1, · · · , Yn

i.i.d.∼ Exp(2) so that Yn ∼ Gamma(n, 2/n).
The density of Xn in the above example is just the exact density
(derived using the CDF method) of

Xn :=
√
n(Yn − 2)

2 =

(√
n

2

)
Yn −

√
n

which, by the CLT, converges in distribution to the N (0, 1) distribution
as n→ ∞.
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Example

Example
The weight of a randomly-selected GauchoPlay-brand toy (in oz) follows
some distribution with mean 8.2 oz and standard deviation 0.8 oz. If a
random sample of 64 GauchoPlay toys is taken, what is the approximate
probability that the average weight of toys in the sample lies within 0.1 oz
of the true average weight of 8.2 oz?
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Solution
• Let Yi denote the weight of a randomly-selected GauchoPlay-brand

toy. We don’t know exactly what the distribution of Yi is, but we do
know that E[Yi] = 8.2 and Var(Yi) = 0.82 = 1.6.

• The quantity we seek is

P(|Y64 − 8.2| < 0.1) = P(8.1 < Y64 < 8.3)

• Now, the issue is that we don’t know what distribution Y64 follows.
However, by the CLT, we do know that

√
n(Yn − µ)

σ
=

√
n(Yn − 8.2)

0.8 ⇝ N (0, 1)
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Solution

• So, what this means is that if our sample size n is large enough, the
quantity √

n(Yn − 8.2)
0.8

will be well-approximated by something following the standard
normal distribution.

• A sample size of n = 64 is relatively large, so we can safely conclude
that √

64(Y64 − 8.2)
0.8 =

Y64 − 8.2
0.1

d
≈ N (0, 1)
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Solution

• Therefore, we write

P(|Y64 − 8.2| < 0.1) = P(−0.1 < Y64 − 8.2 < 0.1)

= P

(
−0.1

0.1 <
Y64 − 8.2

0.1 <
0.1
0.1

)
= P

(
Y64 − 8.2

0.1 < 1
)
− P

(
Y64 − 8.2

0.1 < −1
)

≈ Φ(1)− Φ(−1) = 2Φ(1)− 1 ≈ 68.26%
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Notes

• A couple of notes:
• For this class we won’t concern ourselves too much with how large a

sample size must be in order for the CLT to apply.
• As a rule of thumb, n > 20 is usually sufficient to invoke the CLT however other

cutoffs are sometimes used (n > 10, or even n > 35).
• Also, the CLT can be used to construct intervals that cover certain

events with a given probability - take a look at MT02 Practice Problem
7, which we will go over together tomorrow (Tuesday).
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Leadup

• Alright, so up until now we’ve concerned ourselves primarily with
determining what properties a “good” estimator might possess.

• We started off with the notions of unbiasedness and small MSE (both
of which are good!), and then talked about consistency as yet another
potential property we’d like an estimator to satisfy.

• But, in everything we’ve done so far, we’ve been provided with an
estimator and asked to test its efficacy.

• We now turn our attention to answering the question - how do we go
about constructing estimators?
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Method of Moments
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Method of Moments

• Allow me to introduce the Method of Moments (MoM) by way of an
example.

• Say we have Y1, · · · , Yn
i.i.d.∼ Unif[0, θ] for some (unknown) θ > 0, and

suppose we want to construct an estimator for θ.
• Note that E[Y1] = θ/2.
• Now, by the WLLN, it makes sense to assume that the sample mean
(Yn) will be relatively close to the population mean (µ := θ/2).

• So, what if we set the sample mean to the population mean, solve for
θ, and call the resulting quantity an estimator for θ?
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Method of Moments

• That is, we assert our estimator θ̂MM must satisfy

Yn =
θ̂MM

2
• This in turn yields the estimator

θ̂MM = 2Yn
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Method of Moments
• First and foremost, is this a “good” estimator?
• Well, note that it is unbiased:

E[θ̂MM] = E[2Yn] = 2 · E[Yn] = 2 · θ2 = θ ✓

• Additionally, it is a consistent estimator for θ:
• By the WLLN, Yn

p−→ (θ/2)
• Hence, by the Continuous Mapping Theorem (CMT) with g(x) = 2x, we have that

θ̂MM = 2Yn
p−→ 2 · θ2 = θ ✓
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Moments

• So, it seems we’ve constructed a pretty good estimator for θ!
• Before posing the general scheme for uing this strategy to construct

estimators, let me quickly remind us of some terminology.
• If Yi follows some distribution, recall that the kth population moment

of that distribution, notated µk, is given by µk := E[Yki ].
• Given a sample {Yi}ni=1, the kth sample moment, notated Mk,n, is

defined as

Mk,n :=
1
n

n∑
i=1

Yki
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Method of Moments, One-Parameter
Case

• We’re finally ready to pose the first version of the Method of
Moments!

• Again, remember that this method is designed to yield an estimator
θ̂n for θ.

1. Equate the first sample moment (i.e. the sample mean) to the first
population moment.

2. Replace all instances of θ with θ̂MM, and then solve for θ̂MM in terms of
the first sample moment.
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Method of Moments, General Case

• What do we do if our distribution has multiple parameters?
• Well, we follow a very similar procedure:

1. Set µk = Mk,n for k = 1, · · ·p where p is the number of parameters.
2. Replace all instances of θk with θ̂MM,k (again, for k = 1, · · · ,p), and

then solve the system of equations for θ̂MM,k in terms of the first
sample moment.
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Example

Example
Consider Y1, · · · , Yn

i.i.d.∼ N (µ, σ2) where both µ and σ2 are unknown
parameters. Find µ̂MM and σ̂2MM, the Method of Moments estimators for µ
and σ2, respectively.
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Example

• Since we have two parameters, we will end up with a system of two
equations to solve.

• Furthermore, we’ll need both the first and second population
moments, so let’s compute those.

• We know that µ1 := E[Y1] = µ; additionally, µ2 = Var(Y1) + µ2
1 = σ2 + µ2.

• Therefore, µ̂MM and σ̂2MM must satisfy the system of equations{
µ̂MM = Yn
µ̂2

MM + σ̂2MM = M2,n
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Example
• The first equation immediately gives us the Method of Moments

estimator for µ:
µ̂MM = Yn

• Substituting this into the second equation yields the Method of
Moments estimator for σ2:

σ̂2MM = M2,n − µ̂2
MM

=
1
n

n∑
i=1

Y2
i − (Yn)2
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Example

Example
An i.i.d. sample of 8 cats is taken from the population of all DSH cats;
their observed weights (in lbs) are given by

(8.2, 9.2, 8.7, 10.2, 15.2, 7.2, 16.1, 9.5)

Based on this sample, what is an appropriate estimate for the true
average weight of all DSH cats? What is an appropriate estimate for the
true variance of weights among all DSH cats? Assume the weight of a
randomly-selected DSH cat is normally distributed.
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Example

• Let’s use the Method of Moments estimator.
• Define Yi to be the weight of a randomly-selected DSH cat; the

problem then tells us that

Y1, Y2, · · · , Y8
i.i.d.∼ N (µ, σ2)

where µ denotes the true average weight of all DSH cats and σ2

denotes the true variance among all DSH cat weights.
• All we need to do is to plug into our MoM estimators we derived in

the previous example!
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Example

y⃗ = (8.2, 9.2, 8.7, 10.2, 15.2, 7.2, 16.1, 9.5)

yn =
1
8(8.2 + 9.2 + 8.7 + · · ·+ 16.1 + 9.5) = 10.5375

m2,8 =
1
8(8.2

2 + 9.22 + 8.72 + · · ·+ 16.12 + 9.52) = 120.4938

=⇒ µ̂MM = 10.5375 lbs

σ̂2MM = 120.4938 − (10.5375)2 ≈ 9.4549 lbs2
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Zero-Moment

• If a particular moment is equal to zero, move to the next moment.
• For example, if Y1, · · · , Yn

i.i.d.∼ Unif[−θ, θ] then E[Y1] = 0. Naturally, θ̂MM

doesn’t satisfy the equation θ̂MM = 0; rather, you should consider
finding the second population moment E[Y2

i ] in terms of θ, replace θ

with θ̂MM, and solve.
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Result

Theorem (Consistency of MoM Estimators)

In general, method of moments estimators are consistent.

• There are certain exceptions, but we won’t concern ourselves with
those in this class.

• Please keep in mind: though you are welcome to use this result
(unless a problem explicitly asks you not to), you can usually appeal
to a combination of the WLLN and CMT to establish consistency for
MoM estimators.
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