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Leadup

• Recall that, prior to Midterm 02, our primary concern was with
determining what properties a “good” estimator should possess.

• We started off with the notions of unbiasedness and small MSE (both
of which are good!), and then talked about consistency as yet another
potential property we’d like an estimator to satisfy.

• We’ll actually return to this question of what makes a good estimator in a bit!
• But, for now, we’d like to turn our attention to actually constructing

estimators.
• Today, we’ll talk about the Method of Moments.
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Method of Moments

• Allow me to introduce the Method of Moments (MoM) by way of an
example.

• Say we have Y1, · · · , Yn
i.i.d.∼ Unif[0, θ] for some (unknown) θ > 0, and

suppose we want to construct an estimator for θ.
• Note that E[Y1] = θ/2.
• Now, by the WLLN, it makes sense to assume that the sample mean
(Yn) will be relatively close to the population mean (µ := θ/2).

• So, what if we set the sample mean to the population mean, solve for
θ, and call the resulting quantity an estimator for θ?
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Method of Moments

• That is, we assert our estimator θ̂MM must satisfy

Yn =
θ̂MM

2
• This in turn yields the estimator

θ̂MM = 2Yn
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Method of Moments
• First and foremost, is this a “good” estimator?
• Well, note that it is unbiased:

E[θ̂MM] = E[2Yn] = 2 · E[Yn] = 2 · θ2 = θ ✓

• Additionally, it is a consistent estimator for θ:
• By the WLLN, Yn

p−→ (θ/2)
• Hence, by the Continuous Mapping Theorem (CMT) with g(x) = 2x, we have that

θ̂MM = 2Yn
p−→ 2 · θ2 = θ ✓
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Moments

• So, it seems we’ve constructed a pretty good estimator for θ!
• Before posing the general scheme for uing this strategy to construct

estimators, let me quickly remind us of some terminology.
• If Yi follows some distribution, recall that the kth population moment

of that distribution, notated µk, is given by µk := E[Yki ].
• Given a sample {Yi}ni=1, the kth sample moment, notated Mk,n, is

defined as

Mk,n :=
1
n

n∑
i=1

Yki
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Method of Moments, One-Parameter
Case

• We’re finally ready to pose the first version of the Method of
Moments!

• Again, remember that this method is designed to yield an estimator
θ̂n for θ.

1. Equate the first sample moment (i.e. the sample mean) to the first
population moment.

2. Replace all instances of θ with θ̂MM, and then solve for θ̂MM in terms of
the first sample moment.
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Method of Moments, General Case

• What do we do if our distribution has multiple parameters?
• Well, we follow a very similar procedure:

1. Set µk = Mk,n for k = 1, · · ·p where p is the number of parameters.
2. Replace all instances of θk with θ̂MM,k (again, for k = 1, · · · ,p), and

then solve the system of equations for θ̂MM,k in terms of the first
sample moment.
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Example

Example
Consider Y1, · · · , Yn

i.i.d.∼ N (µ, σ2) where both µ and σ2 are unknown
parameters. Find µ̂MM and σ̂2MM, the Method of Moments estimators for µ
and σ2, respectively.
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Example

• Since we have two parameters, we will end up with a system of two
equations to solve.

• Furthermore, we’ll need both the first and second population
moments, so let’s compute those.

• We know that µ1 := E[Y1] = µ; additionally, µ2 = Var(Y1) + µ2
1 = σ2 + µ2.

• Therefore, µ̂MM and σ̂2MM must satisfy the system of equations{
µ̂MM = Yn
µ̂2

MM + σ̂2MM = M2,n
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Example
• The first equation immediately gives us the Method of Moments

estimator for µ:
µ̂MM = Yn

• Substituting this into the second equation yields the Method of
Moments estimator for σ2:

σ̂2MM = M2,n − µ̂2
MM

=
1
n

n∑
i=1

Y2
i − (Yn)2
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Example

Example
An i.i.d. sample of 8 cats is taken from the population of all DSH cats;
their observed weights (in lbs) are given by

(8.2, 9.2, 8.7, 10.2, 15.2, 7.2, 16.1, 9.5)

Based on this sample, what is an appropriate estimate for the true
average weight of all DSH cats? What is an appropriate estimate for the
true variance of weights among all DSH cats? Assume the weight of a
randomly-selected DSH cat is normally distributed.
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Example

• Let’s use the Method of Moments estimator.
• Define Yi to be the weight of a randomly-selected DSH cat; the

problem then tells us that

Y1, Y2, · · · , Y8
i.i.d.∼ N (µ, σ2)

where µ denotes the true average weight of all DSH cats and σ2

denotes the true variance among all DSH cat weights.
• All we need to do is to plug into our MoM estimators we derived in

the previous example!
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Example

y⃗ = (8.2, 9.2, 8.7, 10.2, 15.2, 7.2, 16.1, 9.5)

yn =
1
8(8.2 + 9.2 + 8.7 + · · ·+ 16.1 + 9.5) = 10.5375

m2,8 =
1
8(8.2

2 + 9.22 + 8.72 + · · ·+ 16.12 + 9.52) = 120.4938

=⇒ µ̂MM = 10.5375 lbs

σ̂2MM = 120.4938 − (10.5375)2 ≈ 9.4549 lbs2
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Zero-Moment

• If a particular moment is equal to zero, move to the next moment.
• For example, if Y1, · · · , Yn

i.i.d.∼ Unif[−θ, θ] then E[Y1] = 0. Naturally, θ̂MM

doesn’t satisfy the equation θ̂MM = 0; rather, you should consider
finding the second population moment E[Y2

i ] in terms of θ, replace θ

with θ̂MM, and solve.
• You’ll work through a problem like this on the next homework (to be

released early Tomorrow [Friday]).
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Result

Theorem (Consistency of MoM Estimators)

In general, method of moments estimators are consistent.

• There are certain exceptions, but we won’t concern ourselves with
those in this class.

• Please keep in mind: though you are welcome to use this result
(unless a problem explicitly asks you not to), you can usually appeal
to a combination of the WLLN and CMT to establish consistency for
MoM estimators.
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Clicker Question

Clicker Question 1

Are Method of Moments estimators always unbiased?

(A) Yes
(B) No
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Example Word Problem 1

Example
A coin is tossed 27 times. Among these 27 tosses, 13 heads are observed.
Based on this data, what is an ideal estimate for the probability that this
coin lands heads on any given toss?
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Example Word Problem 2

Example
A company wants to know what proportion of their stock is defective. To
that end, they hire 3 workers (Abhi, Biyonka, and Cameron) who each
keep randomly selecting products until they find a defective product.
Abhi observes his first defective product on his third draw, Biyonka
observers her first defective product on her fourth draw, and Cameron
observes their first defective product on their fourth draw.

Based on this data, what is a good estimate for the true proportion of
products that are defective?
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Leadup

• The Method of Moments is certainly a very popular technique for
constructing estimators.

• It is, however, not the only technique that can be used to construct
estimators.

• Before going too far, we’ll need to actually take a step back and try
and gain some new perspective on some old concepts...
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Likelihoods
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Leadup
• Let’s consider a discrete random vector X⃗ := (X1, · · · , Xn). In other

words, consider a collection of discrete random variables X1, · · · , Xn.
• To make things even more explicit, assume Xi

i.i.d.∼ Bern(θ), so that Xi
simply models the outcome of a p−coin flip [recall that a “θ−coin” is
a coin that lands “heads” with probability θ].

• What does the joint PMF pX⃗ (⃗x) actually represent?
• Well, by definition (since we are assuming a discrete random vector)

pX⃗ (⃗x) = pX1,··· ,Xn(x1, · · · , xn)
= P(X1 = x1, X2 = x2, · · · , Xn = xn)
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Leadup
• For example, if n = 3 then

pX1,X2,X3(1,0,0) = P(X1 = 1, X2 = 0, X3 = 0)

represents the probability that the first coin landed heads, the
second coin landed tails, and the third coin landed tails.

• So, a joint PMF is really a specification of probabilities; i.e. a way of
quantifying our beliefs.

• Of course, pX⃗ (⃗x) will, in general, involve our population parameter (θ
in this example). For example,

pX1,X2,X3(1,0,0) = θ(1 − θ)2
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Notation
• As such, let’s modify our notation a bit to make it clear that these

joint PMFs depend on θ.
• Specifically, we’ll write pX⃗ (⃗x; θ).
• Now, if X⃗ is a continuous random vector, we have instead a joint PDF

(as opposed to a joint PMF)

fX⃗ (⃗x) = fX1,X2,··· ,Xn(x1, x2, · · · , xn)

• Of course, the value of a joint PDF at any particular input is not a
probability, but we can still view the joint PDF as a way of quantifying
our joint beliefs on X⃗ (and, indirectly, θ).
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Likelihood
• This brings us to the notion of a likelihood.

Definition (Likelihood)

Let y⃗ := {yi}ni=1 be an observed instance of a random sample Y⃗ :=
{Yi}ni=1, whose distribution depends on some parameter θ. The
likelihood of the sample is simply the joint PMF/PDF of Y⃗.

• To avoid having to constantly separate the discrete and continuous
cases, we adopt the notation

Ly⃗(θ) or L(y1, · · · , yn; θ)

to mean the likelihood.
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Notation

• A quick note on notation: I will use the notations Ly⃗(θ) and
L(y1, · · · , yn; θ) interchangeably [though the second notation makes
the sample values clearer, it is clunkier than the first].

• Just be aware that the textbook always uses L(y1, · · · , yn; θ).
• Technically the textbook writes L(y1, · · · , yn | θ), but so as to avoid confusion

with conditional distributions I will avoid using this notation for the purposes
of this class.

• And, again, to reiterate - the likelihood is nothing more than the joint
PMF/PDF of a random sample, evaluated at a particular observed
instance y⃗.
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Simplification

• Now, if we assume an i.i.d. sample, we can expand things a bit.
• For instance, if Y1, · · · , Yn are i.i.d. discrete random variables from a

distribution with mass function p(y; θ), then

Ly⃗(θ) = pX1,X2,··· ,Xn(x1, x2, · · · , xn)

= pX1(x1; θ)× pX2(x2; θ)× · · · × pXn(xn; θ) =
n∏
i=1

p(xi; θ)
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Simplification

• Similarly, if Y1, · · · , Yn are i.i.d. continuous random variables from a
distribution with density function f (y; θ), then

Ly⃗(θ) = fX1,X2,··· ,Xn(x1, x2, · · · , xn)

= fX1(x1; θ)× fX2(x2; θ)× · · · × fXn(xn; θ) =
n∏
i=1

f (xi; θ)
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Example

Example
The weight of a randomly-selected DSH cat is assumed to be normally
distributed about some unknown mean µ and with some known standard
deviation σ = 2 lbs. An i.i.d. random sample of 3 cats is taken; their
weights are 8.2 lbs, 16.2 lbs, and 14.1 lbs. What is the likelihood of this
sample? (Remember that this will be a function of µ!)
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Solution

• Let Yi denote the weight of a randomly-selected DSH cat; then
Y1, Y2, · · ·

i.i.d.∼ N (µ, 4).
• Hence, the density of Yi at a point yi is given by the density of a
N (µ, 4) distribution, evaluated at yi:

f (yi;µ) =
1

2
√

2π
e− 1

8 (yi−µ)2
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Solution

• Therefore,

L(8.2,16.2,14.1)(µ) = f (8.2;µ)× f (16.2;µ)× f (14.1;µ)

=

(
1

2
√

2π
e− 1

8 (8.2−µ)2
)
×

(
1

2
√

2π
e− 1

8 (16.2−µ)2
)
×(

1
2
√

2π
e− 1

8 (14.1−µ)2
)

=

(
1

2π

)3

exp

{
− 1

8 [(8.2 − µ)2 + (16.2 − µ)2 + (14.1 − µ)2]

}
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Example
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Example
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Example

Example
The wait time of a randomly-selected person at the DMV follows an
exponential distribution with unknown parameter θ. Assuming an i.i.d.
sample {Yi}ni=1 of wait times and their corresponding observed instances
{yi}ni=1, what is the likelihood as a function of θ and {yi}ni=1?

• Let’s do this one on the board.
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Example
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Leadup

• Alright, so that’s what a likelihood is. Why do we care?
• Well, again - I think of the likelihood as, well, the likelihood of

obtaining a particular observation y⃗ of a sample Y⃗.
• So, here’s the clever idea of how to leverage this to construct an

estimator for θ - why don’t we choose θ to maximize the likelihood of
observing the sample that we actually observed?

• This is the idea behind maximum likelihood estimation, which we will
begin next lecture.
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