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Likelihoods
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Leadup

e Last lecture, we began discussing the notion of a likelihood.

* Recall that, computationally, a likelihood is just a joint PMF/PDF that
we now treat as a function of one or more population parameters.

e Conceptually, the likelihood evaluated at a given set of observations
represents how likely a given value of the parameter is.
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Likelihood

Definition (Likelihood)

Lety := {y;}"_, be an observed instance of a random sample Y =
{Y;}"_., whose distribution depends on some parameter 6. The

i=1?

likelihood of the sample is simply the joint PMF/PDF of Y.

 To avoid having to constantly separate the discrete and continuous
cases, we adopt the notation

Ly(9) or LY, ,Yn: 0)

to mean the likelihood.
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%‘”f
Notation u

* A quick note on notation: | will use the notations £y(¢) and
L(V1,- -+ ,Yn; 0) interchangeably [though the second notation makes
the sample values clearer, it is clunkier than the first].

* Just be aware that the textbook always uses L(ya,- - -, ¥n; 0).

® Technically the textbook writes L(y1,--- ,y¥a | 8), but so as to avoid confusion
with conditional distributions | will avoid using this notation for the purposes
of this class.

e And, again, to reiterate - the likelihood is nothing more than the joint
PMF/PDF of a random sample, evaluated at a particular observed
instance y.
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Simplification

* Now, if we assume an i.i.d. sample, we can expand things a bit.
e Forinstance, if Y,,--- .Y, are i.i.d. discrete random variables from a
distribution with mass function p(y; #), then

[’]7(9) = anXz,“',Xn(X‘hXZa to 7Xn)

= Px,(Xa; 0) X Px,(X2; 0) X - X P, (Xn: 0 HP Xi; 0
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Simplification

e Similarly, if Yq,---,Y, are i.i.d. continuous random variables from a
distribution with density function f(y; 6), then

Li(0) = fxaxo xo (X1, X2, -+, Xn)

= fio (%0 0) X fio (%o 0) X -+ X fx. (Xn: 0 Hf Xi; 0
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Example

Example

The weight of a randomly-selected DSH cat is assumed to be normally
distributed about some unknown mean ;. and with some known standard
deviation o = 2 lbs. An i.i.d. random sample of 3 cats is taken; their
weights are 8.2 lbs, 16.2 lbs, and 14.1 |bs. What is the likelihood of this
sample? (Remember that this will be a function of ;!)
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Solution

e Let Y; denote the weight of a randomly-selected DSH cat; then
Y17 Y27 e Ifl\? N(/’LJ 4)'

e Hence, the density of Y; at a point y; is given by the density of a
N (u, 4) distribution, evaluated at y;:

1 1
) = —si—n?
1 - e 8
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Solution

e Therefore,

5(8.2,16.2,14.1)(/1) = f(8-2§ M) X f(16.2; u) X f(14.1; ,u)
1
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Example
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Example
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Example

Example

The wait time of a randomly-selected person at the DMV follows an
exponential distribution with unknown parameter 6. Assuming an i.i.d.
sample {Y;}"_, of wait times and their corresponding observed instances
{vi}l_,, what is the likelihood as a function of § and {y;}"_.?

i=1

e |Let's do this one on the board.
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Example
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~
Leadup (‘J

e Alright, so that's what a likelihood is. Why do we care?

e Again - | think of the likelihood as, well, the likelihood of a particular
value of 6, given the data we observed.
® Given that three randomly-selected cats weigh 8.2, 16.2, and 144 lbs, how likely
is it that the true average weight of all cats is 10 lbs? 10.2 |bs? 11.4 lbs?
* So, here’s the clever idea of how to leverage this to construct an
estimator for ¢ - why don’t we choose 6 to maximize the likelihood of
a particular sample!

e This is the idea behind maximum likelihood estimation.
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Maximum Likelihood Estimation
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Intuition

4e-05
sample

2e-05 (8.2,16.2, 14.1)

Likelihood at p

0e+00

X

 Given that we observed cat weights of 8.2, 16.2, and 14. lbs, the most
plausible value for 1 (i.e. the point corresponding to the highest
likelihood) is around 13. Hence, a “good” estimate for 1, given the
sample we observed, is around 13.
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Intuition

8e-06
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L 2e-06
X

0e+00
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X

 Given that we observed cat weights of 15.2, 15.9, and 24.2 lbs, the most
plausible value for 1 (i.e. the point corresponding to the highest
likelihood) is around 18.5 Hence, a “good” estimate for 1, given the
sample we observed, is around 18.5
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Intuition "~

» The textbook has another (in my opinion) nice way of introducing the
notion of maximum likelihood estimation.

e Say we have a bucket containing 3 marbles, some of which are blue
and some of which are gold.

* Suppose we take a sample of 2 marbles, and observe that they are
both gold. What is a “good” guess for the total number of gold
marbles in the bucket?

e Let X denote the number of gold marbles in a sample of 2, taken at
random and without replacement from a bucket containing 3
marbles, v of which are gold. Then

X ~ HyperGeom(3,,2)
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Intuition

e If there are only 2 gold marbles in the bucket, then the probability of
observing the 2 gold marbles we did in our sample is given by
bz~ OO 1

G 3
e If there are 3 gold marbles in the bucket, then the probability of
observing the 2 gold marbles we did in our sample is given by

()
PX=2)=-% =1
()
e So, v = 3 leads to a higher likelihood of having observed the 2 gold
marbles we did than v = 2.
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Maximum Likelihood Estimator

Definition (Maximum Likelihood Estimator)

Given a random sample ¥ = {v;}_, from a population with un-
known parameter ¢, we define the maximum likelihood estimator
for 0, denoted Oy, as

é\MLE =arg meaX {£y(0)}

* Notice that when finding the MLE, we evaluate the likelihood at the
random sample (so that we obtain a random estimator). More on that
later.
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~
Leadup (‘J

* Now, recall that if our sample is i.i.d., then the likelihood becomes a
product of several terms.

* Hence, maximizing the likelihood would require us to take the
derivative of a function consisting of a product of a bunch of terms,
which would therefore require several applications of the product
rule (for derivatives).

e As such, the likelihood is somewhat rarely maximized directly.
Instead, we make use of a clever fact: given a function f(x) maximized
at a point x’ and a strictly increasing function g(-), then (f o g) is also
maximized at x'.
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Log-Likelihood

e Motivated by this, we define the following quantity:

Deﬁnition (Log-Likelihood)

Given an observation y of a sample Y and the corresponding like-
lihood Ly(0), we define the log likelihood, notated ¢;(0), to be the

natural logarithm of the likelihood. That is,

{5(6) = In £5(0)
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iy
Log-Likelihood u

e Since the logarithm is a strictly increasing function, the value that
maximizes the log-likelihood will be the same value that maximizes
the likelihood.

e That is, the MLE is equivalently given by the maximizing value of the
log-likelihood.

e Furthermore, recall that logarithm of products are simply sums of
logarithms!

e This is the guiding reason behind why we often maximize the
log-likelihood, as opposed to the likelihood itself - maximizing the
log-likelihood typically involves only taking the sum of several
derivatives.
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Log-Likelihood

* More explicitly, suppose we have a continuous sample Y. Then
n
Ly(0) = [[f(Vi;0)
i=1
e Therefore,
n n
ly(0) = In [Hf(Yi;e)] = Inf(Y;;6)
i=1 i=1

which is much easier to differentiate than the original likelihood.
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Example

Example
GivenY,,---.Y, - Exp(6), derive an expression for §MLE, the maximum
likelihood estimator for 6.
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Solutions

e We've previously seen that

1\" 1w .
Ly(0) = (5) - exp {—5 Z Y,} - H Livi>o}
=1 1=1
e The log-likelihood is therefore given by

n n
1
EV(Q) = —nln(0) — 7 E Yi + E In Tiv.>0)
i=1 i=1
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Solutions

e The derivative of the log-likelihood wrt. 6 is:
0
a0 = "5 Z i

e Therefore, OuLe satisfies

n

n 1
SEUERI o (VA
HMLE 92

MLE j=1

« Solving and simplifying yields Ouie = Y, .
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Multi-Parameter Case

e If the underlying population distribution has multiple parameters, we
can still find maximum likelihood estimators for each by jointly
maximizing the likelihood.

* In practice, this typically amounts to taking derivatives wrt. each of
the parameters of interest, setting these derivatives equal to zero,
and solving the resulting system of equations.
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Example

Example
ii.d.

Given Yy, -+ .Y, ~ N(u,0?) where both 1 € R and o2 > 0 are unknown
parameters, find maximum likelihood estimators for both x and o2.

* You'll work through this during Discussion Section.
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Example

Example
Given Yy, --- .Y, e Unif[o, #] where # > o is an unknown parameter, find
OmLe, the maximum likelihood estimator for 6.
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Solution

e Let's begin as we did before, by first finding the likelihood:

Ly(0) = ]i[f(Yi; 0) = ﬁ [% ' ]1{0<Yl<9}:|

i=1
7\" +
= (5) ] Miosvi<ay
i=1

* First note: the likelihood is NOT just equal to (1/6)"!!! The product of
indicators is ABSOLUTELY a part of the likelihood. In fact, let’s focus
on that product a bit.
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Solution

 The entire product (of indicators) is nonzero only when all of the
constituent indicators are nonzero. This only happens when all of the
Y/'s are greater than 0 and less than 6, which occurs when Y(;) > 0 and
Yy < 0. Therefore:

n
[ Liosvicor = Livyzop - Livi<o
i=1

and our likelihood can be written as

1 n
E\?(e) = (5) ’ ]l{Yu)ZO} ) ]l{y(n)ée}
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Solution

* Question - is this differentiable in 6?
e The answer is most definitively “no,” because of the indicator.
* More specifically, here’s a sketch of what the likelihood looks like:

Ly(0)
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Solution

e Of course, just because the likelihood is nondifferentiable doesn’t
mean that it doesn’t have a maximizing value.

* Indeed, just looking at the graph of £;(¢), we can see that it is
maximized when 6 equals Y

Ly(0)
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Solution

e So, we find
arg max {Ly(0)} =: Omie = Y(n)

e How could we have arrived at this conclusion without sketching the
likelihood?
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| Ly
Solution "~

e Here's how I like to think about things. Take a look again at the parts
of the likelihood that depend on 6;

1 n
Ly(0) x (5) Loy

* The term (1/6)" is a decreasing function in #, meaning it is maximized
by setting ¢ to be as small as possible. The term 14>y, constrains ¢
to be no smaller than Y(,. Hence, combining these two facts, we see
that the likelihood is maximized by setting 6 to be Y(,, as we saw

before.
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