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Leadup

• Last lecture, we began discussing the notion of a likelihood.
• Recall that, computationally, a likelihood is just a joint PMF/PDF that

we now treat as a function of one or more population parameters.
• Conceptually, the likelihood evaluated at a given set of observations

represents how likely a given value of the parameter is.
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Likelihood

Definition (Likelihood)

Let y⃗ := {yi}ni=1 be an observed instance of a random sample Y⃗ :=
{Yi}ni=1, whose distribution depends on some parameter θ. The
likelihood of the sample is simply the joint PMF/PDF of Y⃗.

• To avoid having to constantly separate the discrete and continuous
cases, we adopt the notation

Ly⃗(θ) or L(y1, · · · , yn; θ)

to mean the likelihood.
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Notation

• A quick note on notation: I will use the notations Ly⃗(θ) and
L(y1, · · · , yn; θ) interchangeably [though the second notation makes
the sample values clearer, it is clunkier than the first].

• Just be aware that the textbook always uses L(y1, · · · , yn; θ).
• Technically the textbook writes L(y1, · · · , yn | θ), but so as to avoid confusion

with conditional distributions I will avoid using this notation for the purposes
of this class.

• And, again, to reiterate - the likelihood is nothing more than the joint
PMF/PDF of a random sample, evaluated at a particular observed
instance y⃗.
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Simplification

• Now, if we assume an i.i.d. sample, we can expand things a bit.
• For instance, if Y1, · · · , Yn are i.i.d. discrete random variables from a

distribution with mass function p(y; θ), then

Ly⃗(θ) = pX1,X2,··· ,Xn(x1, x2, · · · , xn)

= pX1(x1; θ)× pX2(x2; θ)× · · · × pXn(xn; θ) =
n∏
i=1

p(xi; θ)
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Simplification

• Similarly, if Y1, · · · , Yn are i.i.d. continuous random variables from a
distribution with density function f (y; θ), then

Ly⃗(θ) = fX1,X2,··· ,Xn(x1, x2, · · · , xn)

= fX1(x1; θ)× fX2(x2; θ)× · · · × fXn(xn; θ) =
n∏
i=1

f (xi; θ)
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Example

Example
The weight of a randomly-selected DSH cat is assumed to be normally
distributed about some unknown mean µ and with some known standard
deviation σ = 2 lbs. An i.i.d. random sample of 3 cats is taken; their
weights are 8.2 lbs, 16.2 lbs, and 14.1 lbs. What is the likelihood of this
sample? (Remember that this will be a function of µ!)
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Solution

• Let Yi denote the weight of a randomly-selected DSH cat; then
Y1, Y2, · · ·

i.i.d.∼ N (µ, 4).
• Hence, the density of Yi at a point yi is given by the density of a
N (µ, 4) distribution, evaluated at yi:

f (yi;µ) =
1

2
√

2π
e− 1

8 (yi−µ)2
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Solution

• Therefore,

L(8.2,16.2,14.1)(µ) = f (8.2;µ)× f (16.2;µ)× f (14.1;µ)

=

(
1

2
√

2π
e− 1

8 (8.2−µ)2
)
×

(
1

2
√

2π
e− 1

8 (16.2−µ)2
)
×(

1
2
√

2π
e− 1

8 (14.1−µ)2
)

=

(
1

2π

)3

exp

{
− 1

8 [(8.2 − µ)2 + (16.2 − µ)2 + (14.1 − µ)2]

}
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Example
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Example

Example
The wait time of a randomly-selected person at the DMV follows an
exponential distribution with unknown parameter θ. Assuming an i.i.d.
sample {Yi}ni=1 of wait times and their corresponding observed instances
{yi}ni=1, what is the likelihood as a function of θ and {yi}ni=1?

• Let’s do this one on the board.
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Example
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Leadup

• Alright, so that’s what a likelihood is. Why do we care?
• Again - I think of the likelihood as, well, the likelihood of a particular

value of θ, given the data we observed.
• Given that three randomly-selected cats weigh 8.2, 16.2, and 14.1 lbs, how likely

is it that the true average weight of all cats is 10 lbs? 10.2 lbs? 11.4 lbs?
• So, here’s the clever idea of how to leverage this to construct an

estimator for θ - why don’t we choose θ to maximize the likelihood of
a particular sample!

• This is the idea behind maximum likelihood estimation.
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Maximum Likelihood Estimation
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Intuition
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• Given that we observed cat weights of 8.2, 16.2, and 14.1 lbs, the most
plausible value for µ (i.e. the point corresponding to the highest
likelihood) is around 13. Hence, a “good” estimate for µ, given the
sample we observed, is around 13.
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Intuition
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• Given that we observed cat weights of 15.2, 15.9, and 24.2 lbs, the most
plausible value for µ (i.e. the point corresponding to the highest
likelihood) is around 18.5 Hence, a “good” estimate for µ, given the
sample we observed, is around 18.5
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Intuition
• The textbook has another (in my opinion) nice way of introducing the

notion of maximum likelihood estimation.
• Say we have a bucket containing 3 marbles, some of which are blue

and some of which are gold.
• Suppose we take a sample of 2 marbles, and observe that they are

both gold. What is a “good” guess for the total number of gold
marbles in the bucket?

• Let X denote the number of gold marbles in a sample of 2, taken at
random and without replacement from a bucket containing 3
marbles, γ of which are gold. Then

X ∼ HyperGeom(3, γ, 2)

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 18/36



Intuition
• If there are only 2 gold marbles in the bucket, then the probability of

observing the 2 gold marbles we did in our sample is given by

P(X = 2) =
(2

2
)(1

0
)(3

2
) =

1
3

• If there are 3 gold marbles in the bucket, then the probability of
observing the 2 gold marbles we did in our sample is given by

P(X = 2) =
(3

2
)(3

2
) = 1

• So, γ = 3 leads to a higher likelihood of having observed the 2 gold
marbles we did than γ = 2.
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Maximum Likelihood Estimator

Definition (Maximum Likelihood Estimator)

Given a random sample Y⃗ = {Yi}ni=1 from a population with un-
known parameter θ, we define the maximum likelihood estimator
for θ, denoted θ̂MLE, as

θ̂MLE = arg max
θ

{LY⃗(θ)}

• Notice that when finding the MLE, we evaluate the likelihood at the
random sample (so that we obtain a random estimator). More on that
later.
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Leadup

• Now, recall that if our sample is i.i.d., then the likelihood becomes a
product of several terms.

• Hence, maximizing the likelihood would require us to take the
derivative of a function consisting of a product of a bunch of terms,
which would therefore require several applications of the product
rule (for derivatives).

• As such, the likelihood is somewhat rarely maximized directly.
Instead, we make use of a clever fact: given a function f (x) maximized
at a point x′ and a strictly increasing function g(·), then (f ◦ g) is also
maximized at x′.
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Log-Likelihood

• Motivated by this, we define the following quantity:

Definition (Log-Likelihood)

Given an observation y⃗ of a sample Y⃗ and the corresponding like-
lihood Ly⃗(θ), we define the log likelihood, notated ℓy⃗(θ), to be the
natural logarithm of the likelihood. That is,

ℓy⃗(θ) = lnLy⃗(θ)
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Log-Likelihood
• Since the logarithm is a strictly increasing function, the value that

maximizes the log-likelihood will be the same value that maximizes
the likelihood.

• That is, the MLE is equivalently given by the maximizing value of the
log-likelihood.

• Furthermore, recall that logarithm of products are simply sums of
logarithms!

• This is the guiding reason behind why we often maximize the
log-likelihood, as opposed to the likelihood itself - maximizing the
log-likelihood typically involves only taking the sum of several
derivatives.
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Log-Likelihood

• More explicitly, suppose we have a continuous sample Y⃗. Then

LY⃗(θ) =
n∏
i=1

f (Yi; θ)

• Therefore,

ℓY⃗(θ) = ln

[ n∏
i=1

f (Yi; θ)
]
=

n∑
i=1

ln f (Yi; θ)

which is much easier to differentiate than the original likelihood.
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Example

Example
Given Y1, · · · , Yn

i.i.d.∼ Exp(θ), derive an expression for θ̂MLE, the maximum
likelihood estimator for θ.
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Solutions

• We’ve previously seen that

LY⃗(θ) =

(
1
θ

)n

· exp

{
− 1
θ

n∑
i=1

Yi

}
·

n∏
i=1

1{Yi≥0}

• The log-likelihood is therefore given by

ℓY⃗(θ) = −n ln(θ)− 1
θ

n∑
i=1

Yi +
n∑
i=1

ln1{Yi≥0}
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Solutions
• The derivative of the log-likelihood wrt. θ is:

∂

∂θ
ℓY⃗(θ) = −n

θ
+

1
θ2

n∑
i=1

Yi

• Therefore, θ̂MLE satisfies

− n
θ̂MLE

+
1

θ̂2
MLE

n∑
i=1

Yi = 0

• Solving and simplifying yields θ̂MLE = Yn .
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Multi-Parameter Case

• If the underlying population distribution has multiple parameters, we
can still find maximum likelihood estimators for each by jointly
maximizing the likelihood.

• In practice, this typically amounts to taking derivatives wrt. each of
the parameters of interest, setting these derivatives equal to zero,
and solving the resulting system of equations.
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Example

Example
Given Y1, · · · , Yn

i.i.d.∼ N (µ, σ2) where both µ ∈ R and σ2 > 0 are unknown
parameters, find maximum likelihood estimators for both µ and σ2.

• You’ll work through this during Discussion Section.

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 29/36



Example

Example
Given Y1, · · · , Yn

i.i.d.∼ Unif[0, θ] where θ > 0 is an unknown parameter, find
θ̂MLE, the maximum likelihood estimator for θ.
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Solution

• Let’s begin as we did before, by first finding the likelihood:

LY⃗(θ) =
n∏
i=1

f (Yi; θ) =
n∏
i=1

[
1
θ
· 1{0≤YI≤θ}

]

=

(
1
θ

)n

·
n∏
i=1

1{0≤Yi≤θ}

• First note: the likelihood is NOT just equal to (1/θ)n!!! The product of
indicators is ABSOLUTELY a part of the likelihood. In fact, let’s focus
on that product a bit.
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Solution
• The entire product (of indicators) is nonzero only when all of the

constituent indicators are nonzero. This only happens when all of the
Yi’s are greater than 0 and less than θ, which occurs when Y(1) ≥ 0 and
Y(n) ≤ θ. Therefore:

n∏
i=1

1{0≤Yi≤θ} = 1{Y(1)≥0} · 1{Y(n)≤θ}

and our likelihood can be written as

LY⃗(θ) =

(
1
θ

)n

· 1{Y(1)≥0} · 1{Y(n)≤θ}
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Solution
• Question - is this differentiable in θ?
• The answer is most definitively “no,” because of the indicator.
• More specifically, here’s a sketch of what the likelihood looks like:

θ

LY⃗(θ)

Y(n)
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Solution
• Of course, just because the likelihood is nondifferentiable doesn’t

mean that it doesn’t have a maximizing value.
• Indeed, just looking at the graph of LY⃗(θ), we can see that it is

maximized when θ equals Y(n):

θ

LY⃗(θ)

Y(n)
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Solution

• So, we find
arg max

θ
{LY⃗(θ)} =: θ̂MLE = Y(n)

• How could we have arrived at this conclusion without sketching the
likelihood?
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Solution

• Here’s how I like to think about things. Take a look again at the parts
of the likelihood that depend on θ;

LY⃗(θ) ∝
(

1
θ

)n

· 1{θ≥Y(n)}

• The term (1/θ)n is a decreasing function in θ, meaning it is maximized
by setting θ to be as small as possible. The term 1{θ≥Y(n)} constrains θ

to be no smaller than Y(n). Hence, combining these two facts, we see
that the likelihood is maximized by setting θ to be Y(n), as we saw
before.

Topic 3 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 36/36


	Likelihoods
	Maximum Likelihood Estimation

