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Leadup

• It is finally time for us to begin our transition from probability to
statistics!

• Let’s start off with an analogy I posed on the first day of the quarter.
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Scenario 1

• We know that a bucket contains
some (known) number of blue
and gold marbles. From this
bucket we take a sample.

• Given our knowledge of what’s
in the bucket, we want to inform
what’s in our hand (e.g. number
of gold marbles, probability of
having more than 3 blue
marbles, etc.)
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Scenario 2
• We have a sample of blue and

gold marbles (and we know how
many of each are in our sample),
that we know came from a
bucket.

• Given our knowledge of what’s
in our hand, we want to inform
what’s in the bucket (e.g.
number of gold marbles,
probability of having more than
3 blue marbles, etc.)
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Cycle
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Example

Goal

Determine the true average (mean) commute time (in minutes) of
college students.

• First, note that it is next-to-impossible to compute this quantity
exactly. Doing so would require us to survey every single college
student in the US, ensure they are reporting accurate commute times,
etc.

• A much better strategy would be to take a random sample of college
students and try to use this sample to make inferences about the
true average commute times of college students.
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Example

• In this situation, our population can be thought of as the set of all
college students.

• The commute times of n randomly-selected college students could
then be modeled by a collection {Yi}n

i=1 of random variables.
• But wait - why random? Aren’t commute times deterministic?
• Well yes... and no. The commute time of a randomly-selected person

will clearly be random - it varies from person-to-person!
• But, you’re right in that, say, Angela’s (or any specific individual’s)

commute time is fixed. (Admittedly, it may vary from day to day, but
let’s ignore that subtelty for now.)
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Example

• This is where we need to be very careful about our notation.
• Specifically, we can let Yi denote the commute time of a

randomly-selected person; then the collection Y⃗ := {Yi}n
i=1 is a

collection of random variables. [Following the 120A convention, we
use capital letters to denote random variables.]

• But, once we collect a specific sample, we obtain a list of n numbers
(commute times), which we can denote as y⃗ = {yi}n

i=1. [Note that we
are using lowercase letters here.]

• I often refer to y⃗ as an “observed instance” or “realization” of the
random vector Y⃗.
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Example

Goal

Determine the true average (mean) weight (in lbs) of all domestic
shorthair (DSH) cats

• Population: set of all DSH cats
• Random Sample: Y⃗ := {Yi}n

i=1, the weights of n randomly-selected
cats

• Observed Instance: y⃗ := {yi}n
i=1, the weights of Kitty, Shiro, Bean, etc.
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Back to the Cycle
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Population Parameters

• Now, a population parameter is some quantity that governs the
population.

• For the purposes of this class, we’ll think of this as a number (e.g. the
true average weight of all DSH cats; the longest time a human can
hold their breath; etc.)

• We’ll even go a step further and impose a distributional assumption
on our population, after which we can interpret population
parameters as, well, the parameters of the population distribution!
(More on that later.)
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Inferences

• Now, notice that I’ve used the word “infer” to describe what we seek
to do with our sample.

• Inference (typically) means one of two things:
• Estimation: where we seek to use our sample to estimate the value of a

population parameter
• Hypothesis Testing: where we seek to use our sample to assess the potential

validity of claims surrounding a particular population parameter.
• Both of these are examples (or subcases) of inferential statistics,

where we seek to take a sample and make inferences about the
population.
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Example
• To further elucidate the distinction between estimation and

hypothesis testing, let’s return to our Domestic Shorthair Cat
example.

• Specifically, we take our population to be the set of all Domestic
Shorthair Cats, and seek to perform inference on µ := the true
average weight (in lbs) of a randomly-selected Domestic Shorthair
Cat.

• Suppose our goal is to estimate the true value of µ.
• To do so, we might collect a random sample of DSH cats, compute their

observed sample mean weight, and use this to try and say something about
the true value of µ.

• This is an estimation problem, as our goal is to estimate the value of µ.
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Example
• Now, suppose we have the same population (set of all DSH cats) and

the same population parameter (µ, the true average weight in lbs of a
randomly-selected DSH cats).

• Suppose a veterinarian has told us that the average DSH cat weights
6.2 lbs.

• We might then ask ourselves: if we collect data of our own (i.e.
random samples of cats, and compute the observed sample average
weight), will our data agree with this claim?

• Here, we don’t really care what the exact value of µ is; we’re just trying to
ascertain whether or not it is equal to 6.2.

• This is an example of hypothesis testing, as we are using our data to try and
determine the validity of a given claim about µ (in this case, the claim that
µ = 6.2).
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The Road Ahead

• We’ll start off with a discussion of estimation, which will last us
several lectures.

• After that, we’ll tackle Hypothesis Testing.
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Estimation
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Goal

Goal

Given a population with parameter θ, we seek to take random
samples Y⃗ := (Y1, · · · , Yn) from this population and use them to
estimate the true value of θ.

• Again, as a concrete example, think in terms of our Cats example: we
seek to use samples Y⃗ of randomly-selected cat weights to estimate
the value of µ, the true population mean.

• Note that it is customary to use the letter θ to denote an arbitrary
population parameter.
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Notation

• We use µ to denote population means
• We use σ2 to denote population variances, and σ to denote

population standard deviations
• We use p to denote population proportions (e.g. true proportion of

all cats that weight above 5 lbs)

• Again, we use θ to denote an arbitrary parameter.
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Assumptions

Goal

Given a population with parameter θ, we seek to take random
samples Y⃗ := (Y1, · · · , Yn) from this population and use them to
estimate the true value of θ.

• This is a pretty lofty goal as it stands!
• So, to make our lives easier, we are going to make some additional

assumptions.
• Specifically, we are going to assume that our random draws from the

population follow a predetermined distribution.
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Goal, Restated

• For example, we may say things like “assume the weight of a
randomly-selected DSH cat follows a normal distribution”

• Or, “suppose the commute time of a randomly-selected person
follows an Exponential distribution with mean θ”

• We also often impose an independence constraint; that is, we’ll
assume our sample Y⃗ := {Yi}n

i=1 is a collection of independent
random variables.

• In fact, more often than not, we’ll even assume that our sample is i.i.d.
(independent and identically distributed)
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Assumptions

Goal

Given a population, from which random variables are assumed to
follow a distribution F with parameter θ, we seek to take random
samples Y⃗ := (Y1, · · · , Yn) from this population and use them to
estimate the true value of θ.

• Here, I use F to denote an arbitrary distribution, with CDF F() and PDF
f ().
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Intuition

• Alright, let’s establish some intuition.
• In fact, to ground things even more, let’s go back to our cat example.
• We assume we have a sample Y⃗ of randomly-selected cat weights

following some distribution F with some true mean µ, and we seek to
estimate µ.

• Since we want to estimate the value of a population mean, doesn’t it
make sense to consider using the sample mean as a proxy?
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Intuition

• Said differently, say I collect a random sample of 5 cats and find their
weights (in lbs) to be (8.2, 6.1, 10.2, 8.4, 9.2).

• If I ask you, based on just this sample along, to give me your best
guess for the average weight of all cats in the world, wouldn’t you
just say 8.42 (i.e. the sample mean weight)?

• So, it seems like however we estimate µ with Y⃗, we should somehow
use Yn := n−1 ∑n

i=1 Yi, right?
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Statistics

Definition (Statistic)

Given a random sample Y⃗ = {Yi}n
i=1, a statistic T is simply a func-

tion of Y⃗:
T := T(Y⃗) = T(Y1, · · · , Yn)

• Example: sample mean Yn := 1
n
∑n

i=1 Yi

• Example: sample variance 1
n−1

∑n
i=1(Yi − Yn)

2

• Example: sample maximum Y(n)
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Statistics

Definition (Estimator)

An estimator θ̂n for a population parameter θ is a statistic (com-
puted from a random sample taken from this population) that is
being used to estimate θ.

• Example: we can use the sample mean as an estimator of the
population mean: µ̂n := 1

n
∑n

i=1 Yi
• Example: we can use the sample variance as an estimator of the

population variance: σ̂2n := 1
n−1

∑n
i=1(Yi − Yn)

2
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Estimators
• Hey look - functions of random variables!
• Yup, that’s right - we will most certainly be using our

Transformations-related results going forward.

Definition (Sampling Distribution)

Given a random sample Y⃗ = {Yi}n
i=1 and a statistic T := T(Y⃗), the

sampling distribution of T is simply the distribution of T.

• To find sampling distributions of specific statistics, we will (perhaps
unsurprisingly) rely on our techniques from Topic 02 of this course
(i.e. our unit on Transformations).
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Example

Example
Suppose the weight (in lbs) of a randomly-selected DSH cat follows a
normal distribution with unknown mean µ and known standard deviation
σ = 1.8 lbs. Let Y⃗ := {Yi}n

i=1 denote an i.i.d. random sample of DSH cats,
and consider using the sample mean as an estimator for µ:

µ̂n :=
1
n

n∑
i=1

Yi

What is the sampling distribution of µ̂n?
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Solution

• We know that, by assumption, Y1, · · · , Yn
i.i.d.∼ N (0, 1.82)

• Hence, by (Linear Combinations of Independent Normals), we have

µ̂n :=
1
n

n∑
i=1

Yi ∼ N
(
µ,

1.82

n

)
∼ N

(
µ,

3.24
n

)
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Estimators vs. Estimates
• The textbook defines an estimator to be “a rule, often expressed as a

formula, that tells how to calculate the value of an estimate based on
the measurements contained in a sample.”

• This is essentially the same definition I proposed above - it’s a rule,
meaning it’s not really a number per se.

• Rather, estimators are random variables! (Otherwise, why would we
talk about sampling distributions of estimators?)

• Of course, once we obtain an observed instance of a sample, we will
be able to compute an actual numerical estimate for θ. This is what
we call a estimate - an estimate is just an observed instance of an
estimator.
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Estimators vs. Estimates

• Again, maybe it helps to think in terms of our cat example.
• Say I take one random sample of cat weights Y⃗. This represents the

act of taking an arbitrary sample of cat weights - it’s random,
because different samples of cats will have different weights!

• This random sample is what we use to construct an estimator, like µ̂n := Yn. “I
take a random sample of cats and compute the mean weight -” different
samples will have different observed values of the mean!
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Estimators vs. Estimates

• But, once I pin down a specific sample of cats (e.g. Kitty, Shiro, Bean),
I can compute the mean of this deterministic collection of weights,
which will in turn give me a deterministic number.

• This is what we use to construct our estimate.

• So, the big moral is: estimators θ̂n of a parameter θ are random,
whereas estimates are deterministic (specifically, observed instances
of θ̂n).
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Non-Uniqueness of Estimators

• Given a single parameter θ, we can consider constructing several
different estimators!

• For example, given a sample Y⃗ to estimate the mean µ, each of the
following could be used as an estimator of µ:

• µ̂n,1 := Yn := n−1 ∑n
i=1 Yi

• µ̂n,2 := (Y1 + Y3)/2
• µ̂n,3 := Y5

• So, a natural question arises: can we pinpoint what makes one
estimator better than another? Or, analogously, can we pinpoint what
makes a given estimator good?
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Assessing the Performance of Estimators
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Intuition/Analogy

• The textbook presents a very nice analogy: we can think of parameter
estimation as trying to fire a revolver at a target.

• The target is like the parameter - we want to “hit it” (i.e. estimate it)
as closely as we can.

• Any particular shot can be thought of as an estimate, and our
marksperson can be thought of as our estimator (we don’t know
exactly where any arbitrary shot is going to land until after it is made!)
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Intuition/Analogy
• Under this analogy, assessing how well a particular estimator does at

estimating the parameter is akin to assessing how good of a shot our
marksperson is.

• Say the marksperson takes a single shot, and ends up hitting the
target exactly. Can we definitively say they’re a perfect marksperson?

• I think most of us would agree “no-” we need more data! Specifically,
the marksperson could have gotten incredibly lucky and happened to
hit the target by pure chance.

• As such, this is why sampling distributions of estimators are so
important - they are our attempt at modeling our beliefs about how
well an estimator would perform after having taken many samples
(a.k.a. assessing how good of a shot our makrsperson is after having
observed them taking multiple shots).
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Bias

Definition (Bias)

The bias of an estimator θ̂n that is being used to estimate θ is
defined to be

Bias(θ̂n, θ) = E[θ̂n]− θ

• If it is obvious what parameter θ̂n is being used as an estimator for,
then it is customary to simply write Bias(θ̂n).

• Note that the bias of an estimator is just the signed distance between
the center of its sampling distribution and the parameter being
estimated.
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Unbiasedness

Definition (Unbiased Estimator)

An estimator θ̂n is said to be an unbiased estimator of a parame-
ter θ if Bias(θ̂n, θ) = 0, which is equivalent to E[θ̂n] = θ.

• As such, an unbiased estimator is one whose sampling distribution is
centered at the true value of the parameter.
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Bias
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Example

Example
Suppose Y1, · · · , Yn

i.i.d.∼ N (µ, 1), and consider the following three
estimators of µ:

µ̂n,1 := Y1; µ̂n,2 :=
Y1 + Y2

2 ; µ̂n,3 :=
Y1 − Y2

2 ; µ̂n,4 := Yn

Which (if any) are unbiased estimators for µ? For those which are biased,
compute the bias.
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Solution
• We need only to compute the expectation of each estimator, and

compare that to µ.
• For example, E[µ̂n,1] = E[Y1] = µ, so

Bias(µ̂n,1, µ) := E[µ̂n,1]− µ = µ− µ = 0; hence
µ̂n,1 is an unbiased estimator for µ

• For µ̂n,2:

E[µ̂n,2] = E

[
Y1 + Y2

2

]
=
E[Y1] + E[Y2]

2 =
µ+ µ

2 =
2µ
2 = µ

so Bias(µ̂n,2, µ) := E[µ̂n,1]− µ = µ− µ = 0 and
µ̂n,2 is an unbiased estimator for µ
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Solution
• For µ̂n,3:

E[µ̂n,3] = E

[
Y1 − Y2

2

]
=
E[Y1]− E[Y2]

2 =
µ− µ

2 = 0

so Bias(µ̂n,3, µ) = µ meaning µ̂n,3 is a biased estimator for µ
• Finally, for µ̂n,4, we can use our familiar result that the expectation of

the sample mean is the population mean to conclude

E[µ̂n,4] = E
[
Yn

]
= µ

so Bias(µ̂n,4, µ) = 0 and µ̂n,4 is an unbiased estimator for µ
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Asymptotically Unbiased

Definition (Asymptotically Unbiased)

An estimator θ̂n for a parameter θ is said to be
asymptotically unbiased if

lim
n→∞

Bias(θ̂n, θ) = 0

• Note that all unbiased estimators are also asymptotically unbiased.
The converse does not hold, though.

• All asymptotic unbiasedness is saying is: as my sample size grows
larger and larger, any discrepancies between E[θ̂n] and θ get washed
out.
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Chalkboard Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Exp(θ) for some unknown parameter θ > 0. Consider the
following two estimators for θ:

θ̂n,1 = Yn; θ̂n,2 =
1
n

n∑
i=1

Y2
i

Determine which (if either) is an unbiased estimator for θ. Is either of the
two estimators biased but asymptotically unbiased?
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