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Leadup

• Perhaps you’ve noticed that certain quantities arise repeatedly in the
context of estimating certain parameters.

• For example, when estimating a population mean µ (using either the
method of moments or maximum likelihood estimation), the sample
mean Yn appears often.

• When estimating the population variance of a zero-mean
distribution, the quantity

∑n
i=1 Y2

i arises frequently.
• As such, let’s take a brief break from estimation and return back to

the general notion of a statistic.
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Statistics

Definition (Statistic)

Given a random sample Y⃗ = {Yi}n
i=1, a statistic T is simply a func-

tion of Y⃗:
T := T(Y⃗) = T(Y1, · · · , Yn)

• Example: sample mean Yn := 1
n
∑n

i=1 Yi

• Example: sample variance S2
n

1
n−1

∑n
i=1(Yi − Yn)

2

• Example: sample maximum Y(n)
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Statistics as Data Reduction

• A statistic, inherently, is a form of data reduction.
• That is, we take a sample Y⃗ consisting of n elements (i.e.

observations) and reduce it to a single quantity (like the mean,
variance, maximum, etc.).

• Again, this is just a more heuristic way of saying that a statistic is a function of
our sample!

• For this reason, statistics are sometimes referred to as
summary statistics, as they summarize our sample in some way (e.g.
summarize where the “center” of our sample is, summarize how
“spread out” our sample is, etc.)
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Leadup

• Intuitively (as was mentioned at the beginning of this lecture), the
sample mean seems like a pretty good proxy for the population mean.

• Conversely, the sample variance might not give us a lot of
information about the population mean (unless we have a very
specific distribution).

• So, our intuition is telling us that the sample mean is doing a better
job of summarizing information about µ (the population mean) than
the sample variance.

• Can we make this more explicit?

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 5/35



Leadup

• Well, the answer is “yes” and we’ve actually taken some pretty good
steps to making our intuition more explicit, by way of estimation!

• Said differently, used as an estimator for µ, Yn possess many more
desirable properties than, say, S2

n.
• For example, Yn is an unbiased estimator for µ whereas S2

n is, in general, not.
• Similarly, Yn is a consistent estimator for µ whereas S2

n is, in general, not.
• But let’s see if there’s perhaps a different way to quantify our

intuitions.
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Example

• This is all very abstract - let’s make things more concrete.
• Specifically, suppose Y1, · · · , Yn

i.i.d.∼ Bern(θ).
• In other words, you can imagine Yi to be the outcome of tossing a coin once

and observing whether it landed on heads or tails, where θ represents the
probability the coin will lands “heads” on any particular toss.

• One statistic we could consider is U :=
∑n

i=1 Yi.
• In words, U denotes the number of heads in the n coin tosses.

• Does U capture the maximal amount of information about θ? That is,
can we gain any further information about θ by looking at other
statistics?
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Example

• Here is one way to answer this question: let’s look at the distribution
of (Y1, · · · , Yn | U).

• Before we do, let’s convince ourselves that examining this
distribution is a good idea.

• If the distribution of (Y1, · · · , Yn | U) does not depend on θ, then, in
essence, U will have captured all of the necessary information about
θ.

• Remember that the distribution of (X | Y) can be interpreted as our beliefs on
X after knowing Y.

• Saying that the distribution of (Y1, · · · , Yn | U) doesn’t depend on θ means,
after knowing U, our beliefs on (Y1, · · · , Yn) no longer depend on θ.
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Example
• Alright, let’s go!
• Specifically, we examine P(Y1 = y1, · · · , Y1 = yn | U = u).
• We’re conditioning on an event with nonzero probability, meaning we

can invoke the definition of conditional probability to write

P(Y1 = y1, · · · , Y1 = yn | U = u) = P(Y1 = y1, · · · , Y1 = yn,U = u)
P(U = u)

• Since Y1, · · · , Yn
i.i.d.∼ Bern(θ), we know that U := (

∑n
i=1 Yi) ∼ Bin(n, θ),

meaning
P(U = u) =

(
n
u

)
θu(1 − θ)n−u
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Example

• What about the numerator, P(Y1 = y1, · · · , Y1 = yn,U = u)?
• Well, if

∑n
i=1 yi ̸= u, the probability is zero.

• Here’s how we can think through this: say n = 3, and y1 = 1, y2 = 0, y3 = 0.
(That is, the first coin landed heads, the second landed tails, and the third
landed tails).

• What’s the probability of the first coin landing heads, the second landing tails,
the third landing tails, and observing a total number of heads that is not equal
to 1 (i.e. 1 + 0 + 0)?

• The answer is zero!
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Example
• If

∑n
i=1 yi = u, the event we’re taking the probability of is

{Y1 = y1, · · · , Yn = yn,U = u}

which is just the probability of an independent sequences of zeros
and ones with a total of u ones and (n − u) zeroes.

• That is,
P(Y1 = y1, · · · , Yn = yn,U = u) = θu(1 − θ)n−u

• So, in all,

P(Y1 = y1, · · · , Yn = yn | U = u) =
{
θu(1 − θ)n−u if

∑n
i=1 yi = u

0 otherwise
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Example

• Therefore, dividing by P(U = u) =
(n

u
)
θu(1 − θ)n−u, we have

P(Y1 = y1, · · · , Yn = yn,U = u) =
{ 1
(n

u)
if

∑n
i=1 yi = u

0 otherwise

• So, does this distribution depend on θ?
• Nope! So, after conditioning on U :=

∑n
i=1 Yi, we have removed all

dependency on θ - said differently, U has captured all of the
necessary information about θ.
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Sufficiency

Definition (Sufficiency)

Let Y1, · · · , Yn denote a random sample from a distribution with
parameter θ. A statistic U := g(Y1, · · · , Yn) is said to be sufficient
for θ if the conditional distribution (Y1, · · · , Yn | U) does not de-
pend on θ.
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Sufficiency

• Now, we almost never use the definition of sufficiency.
• Firstly, it only allows us to check whether a given statistic is sufficient

- not how to actually find a sufficient statistic.
• Furthermore, it requires us to find conditional distributions which

are, in general, not particularly easy to find.
• As such, in practice, we rely more heavily on the following theorem:
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Factorization Theorem

Theorem (Factorization Theorem)

Let U be a statistic based on the random sample Y⃗ = (Y1, · · · , Yn).
Then U is a sufficient statistic for the estimation of a parameter
θ if and only if the likelihood LY⃗(θ) factors as

LY⃗(θ) = g(U, θ)× h(Y⃗)

where g(U, θ) is a function of only U and θ (and possibly funda-
mental constants) and h(Y⃗) does not depend on θ.
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Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Bern(θ), where θ ∈ (0, 1) is an unknown parameter. Show
that U :=

∑n
i=1 Yi is a sufficient statistic for θ.

• We’ve actually already shown this using the definition of sufficiency
(at the start of today’s lecture) - let’s show this again, this time using
the Factorization Theorem.
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Solution

LY⃗(θ) =
n∏

i=1

p(Yi; θ) =
n∏

i=1

[
θYi(1 − θ)1−Yi

]
= θ

∑n
i=1 Yi · (1 − θ)n−

∑n
i=1 Yi

=
[
θ
∑n

i=1 Yi · (1 − θ)n−
∑n

i=1 Yi
]

︸ ︷︷ ︸
:=g(

∑n
i=1 Yi ,θ)

× [1]︸︷︷︸
:=h(Y⃗)

where g(U, θ) = θU · (1 − θ)n−U and h(Y⃗) = 1. Therefore, by the
Factorization Theorem, U :=

∑n
i=1 Yi is a sufficient statistic for θ.
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Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Exp(θ), where θ > 0 is an unknown parameter. Propose a
sufficient statistic for θ, and show that it is sufficient.

• We’ll do this one on the board.
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Questions (to be answered together)

• Question: are sufficient statistics unique?
• Question: do sufficient statistics always exist?

• Let’s discuss!
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MVUEs
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Leadup

• Alright, let’s dip our toes back into the realm of estimation.
• Recall that, a few lectures ago, I tried to convince everyone that one

notion of an “ideal” estimator should be unbiased and with as little
variance as possible.

• Let’s run with this idea a bit!
• Indeed, we have the notion of a

Minimum Variance Unbiased Estimator (MVUE) as a sort of
“gold-standard” estimator.

• As the name suggests, an MVUE is an estimator that is unbiased and
possesses the smallest possible variance.
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Leadup

• “Smallest possible variance.-” is it possible to get an unbiased
estimator with zero variance?

• It turns out (and the reasoning behind why is outside the scope of
this course) the answer is, in general, “no.”

• Indeed, there exists a lower bound for the variance of any unbiased
estimator, called the Cramér-Rao Lower Bound (CRLB).
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Cramér-Rao Lower Bound

Theorem (Cramér-Rao Lower Bound)

Consider an i.i.d. sample Y1, · · · , Yn from a distribution with un-
known parameter θ. Under appropriate “regularity conditions”,
every unbiased estimator θ̂ obeys the inequality

Var(θ̂) ≥ 1
In(θ)

where
In(θ) = E

[
− ∂2

∂θ2 ℓY⃗(θ)

]
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Some Terminology

• The Cramér-Rao Lower Bound refers to the lower bound on the
variance, [In(θ)]

−1.
• The term In(θ) is referred to as the Fisher Information of the sample
Y⃗. Note that the fisher information is the expectation of the negative
second-derivative of the log-likelihood of the sample.

• Note that the CRLB is not a strict inequality, meaning that certain
estimators actually achieve the lower bound. An estimator that
achieves the CRLB (i.e. an estimator satisfying Var(θ̂) = [In(θ)]

−1) is
said to be a efficient estimator.
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A Note

• The Cramér-Rao Lower Bound only applies to unbiased estimators. It
is possible to construct biased estimators that have variance smaller
than the CRLB (a very popular example of such an estimator, used
throughout a wide array of different disciplines, is the so-called
“James-Stein estimator”)

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 25/35



Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Exp(θ), where θ > 0 is an unknown parameter.
(a) Find the lowest attainable variance by an unbiased estimator for θ.
(b) Is the estimator θ̂n := Yn an efficient estimator for θ?
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Solutions

• Part (a) is essentially just asking us to compute the CRLB.
• From previous work, we have that the log-likelihood of the sample is

given by

ℓY⃗(θ) = −n ln(θ)− 1
θ

n∑
i=1

Yi +
n∑

i=1

ln1{Yi≥0}

• We now take the first and second derivatives:
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Solutions

∂

∂θ
ℓY⃗(θ) = −n

θ
+

1
θ2

n∑
i=1

Yi

∂2

∂θ2 ℓY⃗(θ) =
n
θ2 − 2

θ3

n∑
i=1

Yi

− ∂2

∂θ2 ℓY⃗(θ) = − n
θ2 +

2
θ3

n∑
i=1

Yi

• The Fisher Information is just the expectation of this last quantity:
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Solutions

In(θ) = E

[
− ∂2

∂θ2 ℓY⃗(θ)

]
= E

[
− n
θ2 +

2
θ3

n∑
i=1

Yi

]

= − n
θ2 +

2
θ3

n∑
i=1

E[Yi] = − n
θ2 +

2n
θ2 =

n
θ2

• The CRLB is just the reciprocal of this last quantity: θ2/n .
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Solutions
• So, in other words, any unbiased estimator for θ (in the context of the

exponential distribution) will have variance greater than or equal to
θ2/n.

• To answer part (b), first note that θ̂n := Yn is an unbiased estimator
for θ. Hence, we simply need to check whether or not its variance
attains the CRLB:

Var(θ̂n) = Var(Yn) =
Var(Y1)

n =
θ2

n
• Since this is exactly equal to the CRLB, we conclude that Yn is a

efficient estimator for θ.
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Solutions

• Finally, let’s try and tie the notion of efficiency back to our initial
discussions on MVUEs.

• First note: perhaps counterintuitively, it’s possible that the MVUE in a
given situation won’t be efficient. We won’t worry too much about
why that is, for the purposes of this class.

• I would, however, like to stress that we would like to construct an
unbiased estimator that has as low variance as possible.

• So, given an estimator θ̂1 for a parameter θ, is it possible to “improve”
(i.e. obtain a new estimator θ̂2 with a lower variance than θ̂1?) Yes!
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Rao-Blackwell Theorem

Theorem (Rao-Blackwell Theorem)

Let θ̂1 be an unbiased estimator for θ with finite variance. If U is
a sufficient statistic for θ, define θ̂2 := E[θ̂1 | U]. Then, for all θ,

E[θ̂2] = θ and Var(θ̂2) ≤ Var(θ̂1)

• So, given an initial unbiased estimator θ̂1 and a sufficient statistic U,
we can “improve” (or, at least, never do worse) by conditioning our
unbiased estimator on our sufficient statistic.

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024
Page 32/35



Rao-Blackwell Theorem

• Now, in practice, using the Rao-Blackwell theorem can be a bit tricky,
mainly due to the intractability of some of the conditional
expectations it requires us to compute.

• I walk you through one particular example in problem 4 of your HW05
• However, the Rao-Blackwell Theorem can be used to tell us that the

following procedure generally gives us an MVUE:
• Say we have a sufficient statistic U that best summarizes our data.

Additionally, say we have an estimator θ̂ := h(U) that is unbiased for
θ. Then, typically, θ̂ will be an MVUE.
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Rao-Blackwell Theorem

• Of course, there are some details missing. For one, it turns out that
even among sufficient statistics, some are “better” at capturing the
information about a parameter than others. (These are called
minimal sufficient statistics, which we won’t cover in this course.)

• So, it’s really a function of a minimal sufficient statistic that will give us the
MVUE in a given situation.

• But, again, for the purposes of this class, we won’t concern ourselves with this
too much.

• Indeed, in general, constructing MVUEs can be a pain! But, it’s useful
to at least know about their existence, and how sufficiency and the
Rao-Blackwell theorem tie into constructing them.
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Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Unif[0, θ], where θ > 0 is an unknown parameter.
(a) Show that Y(n) is a sufficient statistic for θ. (It turns out that this is a

minimal sufficient statistic for θ, but you do not need to show that.)
(b) Find an MVUE for θ.

• Try this on your own, and feel free to ask me about it during Office
Hours!
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