

Topic 4: Sufficiency, and MVUEs

Ethan P. Marzban University of California, Santa Barbara PSTAT 120B

Outline

1. Sufficiency

2. MVUEs

Sufficiency

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 1/35

Leadup

- Perhaps you've noticed that certain quantities arise repeatedly in the context of estimating certain parameters.
- For example, when estimating a *population* mean μ (using either the method of moments or maximum likelihood estimation), the *sample* mean \overline{Y}_n appears often.
- When estimating the population variance of a zero-mean distribution, the quantity $\sum_{i=1}^{n} Y_{i}^{2}$ arises frequently.
- As such, let's take a brief break from estimation and return back to the general notion of a **<u>statistic</u>**.

Statistics

Definition (Statistic)

Given a random sample $\vec{\mathbf{Y}} = \{\mathbf{Y}_i\}_{i=1}^n$, a <u>statistic</u> *T* is simply a function of $\vec{\mathbf{Y}}$: $T := T(\vec{\mathbf{Y}}) = T(\mathbf{Y} = \mathbf{Y})$

$$T := T(\mathbf{Y}) = T(Y_1, \cdots, Y_n)$$

- Example: sample mean $\overline{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$
- Example: sample variance $S_n^2 \frac{1}{n-1} \sum_{i=1}^n (Y_i \overline{Y}_n)^2$
- Example: sample maximum Y_(n)

Statistics as Data Reduction

- A statistic, inherently, is a form of *data reduction*.
- That is, we take a sample $\vec{\mathbf{Y}}$ consisting of *n* elements (i.e. observations) and *reduce* it to a single quantity (like the mean, variance, maximum, etc.).
 - Again, this is just a more heuristic way of saying that a statistic is a *function* of our sample!
- For this reason, statistics are sometimes referred to as **summary statistics**, as they *summarize* our sample in some way (e.g. summarize where the "center" of our sample is, summarize how "spread out" our sample is, etc.)

Leadup

- Intuitively (as was mentioned at the beginning of this lecture), the sample mean seems like a pretty good proxy for the population mean.
- Conversely, the sample variance might not give us a lot of information about the population mean (unless we have a very specific distribution).
- So, our intuition is telling us that the sample mean is doing a better job of summarizing information about μ (the population mean) than the sample variance.
- Can we make this more explicit?

Leadup

- Well, the answer is "yes" and we've actually taken some pretty good steps to making our intuition more explicit, by way of estimation!
- Said differently, used as an estimator for μ , \overline{Y}_n possess many more desirable properties than, say, S_n^2 .
 - For example, \overline{Y}_n is an unbiased estimator for μ whereas S_n^2 is, in general, not.
 - Similarly, \overline{Y}_n is a consistent estimator for μ whereas S_n^2 is, in general, not.
- But let's see if there's perhaps a *different* way to quantify our intuitions.

- This is all very abstract let's make things more concrete.
- Specifically, suppose $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\theta)$.
 - In other words, you can imagine Y_i to be the outcome of tossing a coin once and observing whether it landed on heads or tails, where θ represents the probability the coin will lands "heads" on any particular toss.
- One statistic we could consider is $U := \sum_{i=1}^{n} Y_i$.
 - In words, U denotes the number of heads in the n coin tosses.
- Does U capture the maximal amount of information about θ? That is, can we gain any further information about θ by looking at other statistics?

- Here is one way to answer this question: let's look at the distribution of $(Y_1, \dots, Y_n \mid U)$.
- Before we do, let's convince ourselves that examining this distribution is a good idea.
- If the distribution of $(Y_1, \dots, Y_n \mid U)$ does not depend on θ , then, in essence, U will have captured all of the necessary information about θ .
 - Remember that the distribution of (X | Y) can be interpreted as our beliefs on X after knowing Y.
 - Saying that the distribution of $(Y_1, \dots, Y_n | U)$ doesn't depend on θ means, after knowing U, our beliefs on (Y_1, \dots, Y_n) no longer depend on θ .

- Alright, let's go!
- Specifically, we examine $\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n \mid U = u)$.
- We're conditioning on an event with nonzero probability, meaning we can invoke the definition of conditional probability to write

$$\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n \mid U = u) = \frac{\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n, U = u)}{\mathbb{P}(U = u)}$$

• Since $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\theta)$, we know that $U := (\sum_{i=1}^n Y_i) \sim \text{Bin}(n, \theta)$, meaning

$$\mathbb{P}(\boldsymbol{U}=\boldsymbol{u}) = \binom{n}{\boldsymbol{u}} \theta^{\boldsymbol{u}} (1-\theta)^{n-\boldsymbol{u}}$$

- What about the numerator, $\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n, U = u)$?
- Well, if $\sum_{i=1}^{n} y_i \neq u$, the probability is zero.
 - Here's how we can think through this: say n = 3, and $y_1 = 1$, $y_2 = 0$, $y_3 = 0$. (That is, the first coin landed heads, the second landed tails, and the third landed tails).
 - What's the probability of the first coin landing heads, the second landing tails, the third landing tails, <u>and</u> observing a total number of heads that is not equal to 1 (i.e. 1 + 0 + 0)?
 - The answer is zero!

• If $\sum_{i=1}^{n} y_i = u$, the event we're taking the probability of is

$$\{Y_1 = y_1, \cdots, Y_n = y_n, U = u\}$$

which is just the probability of an independent sequences of zeros and ones with a total of u ones and (n - u) zeroes.

• That is,

$$\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n, U = u) = \theta^u (1 - \theta)^{n-u}$$

• So, in all,

$$\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n \mid U = u) = \begin{cases} \theta^u (1 - \theta)^{n-u} & \text{if } \sum_{i=1}^n y_i = u \\ 0 & \text{otherwise} \end{cases}$$

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 11/35

• Therefore, dividing by $\mathbb{P}(U = u) = \binom{n}{u} \theta^u (1 - \theta)^{n-u}$, we have

$$\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n, U = u) = \begin{cases} \frac{1}{\binom{n}{u}} & \text{if } \sum_{i=1}^n y_i = u\\ 0 & \text{otherwise} \end{cases}$$

- So, does this distribution depend on θ ?
- Nope! So, after conditioning on $U := \sum_{i=1}^{n} Y_i$, we have removed all dependency on θ said differently, U has captured all of the necessary information about θ .

Sufficiency

Definition (Sufficiency)

Let Y_1, \dots, Y_n denote a random sample from a distribution with parameter θ . A statistic $U := g(Y_1, \dots, Y_n)$ is said to be **sufficient** for θ if the conditional distribution $(Y_1, \dots, Y_n \mid U)$ does not depend on θ .

Sufficiency

- Now, we almost never use the definition of sufficiency.
- Firstly, it only allows us to check whether a given statistic is sufficient not how to actually *find* a sufficient statistic.
- Furthermore, it requires us to find conditional distributions which are, in general, not particularly easy to find.
- As such, in practice, we rely more heavily on the following theorem:

Factorization Theorem

Theorem (Factorization Theorem)

Let *U* be a statistic based on the random sample $\vec{\mathbf{Y}} = (Y_1, \dots, Y_n)$. Then *U* is a sufficient statistic for the estimation of a parameter θ if and only if the likelihood $\mathcal{L}_{\vec{\mathbf{y}}}(\theta)$ factors as

$$\mathcal{L}_{\vec{\mathbf{Y}}}(\theta) = g(\mathbf{U}, \theta) \times h(\vec{\mathbf{Y}})$$

where $g(U, \theta)$ is a function of only U and θ (and possibly fundamental constants) and $h(\vec{\mathbf{Y}})$ does *not* depend on θ .

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 15/35

Example

Let $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\theta)$, where $\theta \in (0, 1)$ is an unknown parameter. Show that $U := \sum_{i=1}^{n} Y_i$ is a sufficient statistic for θ .

• We've actually already shown this using the definition of sufficiency (at the start of today's lecture) - let's show this again, this time using the Factorization Theorem.

$$\mathcal{L}_{\vec{\mathbf{y}}}(\theta) = \prod_{i=1}^{n} p(\mathbf{Y}_{i}; \theta) = \prod_{i=1}^{n} \left[\theta^{\mathbf{Y}_{i}} (\mathbf{1} - \theta)^{\mathbf{1} - \mathbf{Y}_{i}} \right]$$
$$= \theta^{\sum_{i=1}^{n} \mathbf{Y}_{i}} \cdot (\mathbf{1} - \theta)^{n - \sum_{i=1}^{n} \mathbf{Y}_{i}}$$
$$= \underbrace{\left[\theta^{\sum_{i=1}^{n} \mathbf{Y}_{i}} \cdot (\mathbf{1} - \theta)^{n - \sum_{i=1}^{n} \mathbf{Y}_{i}} \right]}_{:=g(\sum_{i=1}^{n} \mathbf{Y}_{i}, \theta)} \times \underbrace{[\mathbf{1}]}_{:=h(\vec{\mathbf{Y}})}$$

where $g(U, \theta) = \theta^U \cdot (1 - \theta)^{n-U}$ and $h(\vec{Y}) = 1$. Therefore, by the Factorization Theorem, $U := \sum_{i=1}^{n} Y_i$ is a sufficient statistic for θ .

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 17/35

Example

Let $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\theta)$, where $\theta > 0$ is an unknown parameter. Propose a sufficient statistic for θ , and show that it is sufficient.

• We'll do this one on the board.

Questions (to be answered together)

- Question: are sufficient statistics unique?
- Question: do sufficient statistics always exist?
- Let's discuss!

MVUEs

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 20/35

Leadup

- Alright, let's dip our toes back into the realm of estimation.
- Recall that, a few lectures ago, I tried to convince everyone that one notion of an "ideal" estimator should be unbiased and with as little variance as possible.
- Let's run with this idea a bit!
- Indeed, we have the notion of a <u>Minimum Variance Unbiased Estimator</u> (MVUE) as a sort of "gold-standard" estimator.
- As the name suggests, an MVUE is an estimator that is unbiased and possesses the smallest possible variance.

Leadup

- "Smallest possible variance.-" is it possible to get an unbiased estimator with zero variance?
- It turns out (and the reasoning behind *why* is outside the scope of this course) the answer is, in general, "no."
- Indeed, there exists a lower bound for the variance of *any* unbiased estimator, called the <u>Cramér-Rao Lower Bound</u> (CRLB).

Cramér-Rao Lower Bound

Theorem (Cramér-Rao Lower Bound)

Consider an i.i.d. sample Y_1, \dots, Y_n from a distribution with unknown parameter θ . Under appropriate "regularity conditions", every unbiased estimator $\hat{\theta}$ obeys the inequality

$$\operatorname{Var}(\widehat{\theta}) \geq \frac{1}{\mathcal{I}_n(\theta)}$$

where

$$\mathcal{I}_n(heta) = \mathbb{E}\left[-rac{\partial^2}{\partial heta^2}\ell_{ec{\mathbf{Y}}}(heta)
ight]$$

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 23/35

Some Terminology

- The Cramér-Rao Lower Bound refers to the lower bound on the variance, [*I_n(θ)*]⁻¹.
- The term $\mathcal{I}_n(\theta)$ is referred to as the **Fisher Information** of the sample $\vec{\mathbf{Y}}$. Note that the fisher information is the expectation of the negative second-derivative of the log-likelihood of the sample.
- Note that the CRLB is not a strict inequality, meaning that certain estimators actually achieve the lower bound. An estimator that achieves the CRLB (i.e. an estimator satisfying Var(θ) = [I_n(θ)]⁻¹) is said to be a <u>efficient</u> estimator.

A Note

• The Cramér-Rao Lower Bound only applies to *unbiased* estimators. It is possible to construct *biased* estimators that have variance smaller than the CRLB (a very popular example of such an estimator, used throughout a wide array of different disciplines, is the so-called "James-Stein estimator")

Example Let $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\theta)$, where $\theta > 0$ is an unknown parameter. (a) Find the lowest attainable variance by an unbiased estimator for θ . (b) Is the estimator $\hat{\theta}_n := \overline{Y}_n$ an efficient estimator for θ ?

- Part (a) is essentially just asking us to compute the CRLB.
- From previous work, we have that the log-likelihood of the sample is given by

$$\ell_{\vec{\mathbf{Y}}}(\theta) = -n \ln(\theta) - \frac{1}{\theta} \sum_{i=1}^{n} Y_i + \sum_{i=1}^{n} \ln \mathbb{1}_{\{Y_i \ge 0\}}$$

• We now take the first and second derivatives:

• The Fisher Information is just the expectation of this last quantity:

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 28/35

$$\begin{split} \mathcal{I}_n(\theta) &= \mathbb{E}\left[-\frac{\partial^2}{\partial\theta^2}\ell_{\vec{\mathbf{y}}}(\theta)\right] \\ &= \mathbb{E}\left[-\frac{n}{\theta^2} + \frac{2}{\theta^3}\sum_{i=1}^n Y_i\right] \\ &= -\frac{n}{\theta^2} + \frac{2}{\theta^3}\sum_{i=1}^n \mathbb{E}[Y_i] = -\frac{n}{\theta^2} + \frac{2n}{\theta^2} = \frac{n}{\theta^2} \end{split}$$

• The CRLB is just the reciprocal of this last quantity: $\frac{\theta^2}{n}$.

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 29/35

- So, in other words, any unbiased estimator for θ (in the context of the exponential distribution) will have variance greater than or equal to θ^2/n .
- To answer part (b), first note that θ̂_n := Ȳ_n is an unbiased estimator for θ. Hence, we simply need to check whether or not its variance attains the CRLB:

$$\operatorname{Var}(\widehat{\theta}_n) = \operatorname{Var}(\overline{Y}_n) = \frac{\operatorname{Var}(Y_1)}{n} = \frac{\theta^2}{n}$$

• Since this is exactly equal to the CRLB, we conclude that \overline{Y}_n is a efficient estimator for θ .

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 30/35

- Finally, let's try and tie the notion of efficiency back to our initial discussions on MVUEs.
- First note: perhaps counterintuitively, it's possible that the MVUE in a given situation *won't* be efficient. We won't worry too much about why that is, for the purposes of this class.
- I would, however, like to stress that we would like to construct an unbiased estimator that has as low variance as possible.
- So, given an estimator $\hat{\theta}_1$ for a parameter θ , is it possible to "improve" (i.e. obtain a new estimator $\hat{\theta}_2$ with a lower variance than $\hat{\theta}_1$?) Yes!

Rao-Blackwell Theorem

Theorem (Rao-Blackwell Theorem)

Let $\hat{\theta}_1$ be an unbiased estimator for θ with finite variance. If U is a sufficient statistic for θ , define $\hat{\theta}_2 := \mathbb{E}[\hat{\theta}_1 \mid U]$. Then, for all θ ,

$$\mathbb{E}[\widehat{\theta}_2] = \theta \qquad \text{and} \qquad \operatorname{Var}(\widehat{\theta}_2) \leq \operatorname{Var}(\widehat{\theta}_1)$$

 So, given an initial unbiased estimator θ₁ and a sufficient statistic U, we can "improve" (or, at least, never do worse) by conditioning our unbiased estimator on our sufficient statistic.

Topic 4 | Ethan P. Marzban PSTAT 120B, Sum. Sess. A, 2024 Page 32/35

Rao-Blackwell Theorem

- Now, in practice, using the Rao-Blackwell theorem can be a bit tricky, mainly due to the intractability of some of the conditional expectations it requires us to compute.
 - I walk you through one particular example in problem 4 of your HW05
- However, the Rao-Blackwell Theorem can be used to tell us that the following procedure generally gives us an MVUE:
- Say we have a sufficient statistic U that best summarizes our data.
 Additionally, say we have an estimator θ

 = h(U) that is unbiased for θ. Then, typically, θ
 will be an MVUE.

Rao-Blackwell Theorem

- Of course, there are some details missing. For one, it turns out that even among sufficient statistics, some are "better" at capturing the information about a parameter than others. (These are called **minimal sufficient statistics**, which we won't cover in this course.)
 - So, it's really a function of a *minimal* sufficient statistic that will give us the MVUE in a given situation.
 - But, again, for the purposes of this class, we won't concern ourselves with this too much.
- Indeed, in general, constructing MVUEs can be a pain! But, it's useful to at least know about their existence, and how sufficiency and the Rao-Blackwell theorem tie into constructing them.

Example

Let $Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Unif}[0, \theta]$, where $\theta > 0$ is an unknown parameter.

- (a) Show that $Y_{(n)}$ is a sufficient statistic for θ . (It turns out that this is a *minimal* sufficient statistic for θ , but you do not need to show that.)
- (b) Find an MVUE for θ .
 - Try this on your own, and feel free to ask me about it during Office Hours!