

Topic 4: Sufficiency, and MVUEs

Ethan P. Marzban University of California, Santa Barbara PSTAT 120B

Outline

1. [Sufficiency](#page-2-0)

2. [MVUEs](#page-21-0)

[Sufficiency](#page-2-0)

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 1/35

Leadup

- Perhaps you've noticed that certain quantities arise repeatedly in the context of estimating certain parameters.
- For example, when estimating a *population* mean μ (using either the method of moments or maximum likelihood estimation), the *sample* mean \overline{Y}_n appears often.
- When estimating the population variance of a zero-mean distribution, the quantity $\sum_{i=1}^n Y_i^2$ *i* arises frequently.
- As such, let's take a brief break from estimation and return back to the general notion of a **statistic**.

Statistics

Definition (Statistic)

Given a random sample $\vec{\bm{Y}} = \{Y_i\}_{i=1}^n$ *i*=1 , a **statistic** *T* is simply a function of \vec{Y}

$$
T:=T(\vec{Y})=T(Y_1,\cdots,Y_n)
$$

- Example: sample mean $\overline{Y}_n := \frac{1}{n} \sum_{i=1}^n Y_i$
- Example: sample variance S $_{n}^{2}\frac{1}{n-1}$ $\frac{1}{n-1}$ $\sum_{i=1}^{n} (Y_i - \overline{Y}_n)^2$
- Example: sample maximum *Y*(*n*)

Statistics as Data Reduction

- A statistic, inherently, is a form of *data reduction*.
- That is, we take a sample \vec{Y} consisting of *n* elements (i.e. observations) and *reduce* it to a single quantity (like the mean, variance, maximum, etc.).
	- Again, this is just a more heuristic way of saying that a statistic is a *function* of our sample!
- For this reason, statistics are sometimes referred to as **summary statistics**, as they *summarize* our sample in some way (e.g. summarize where the "center" of our sample is, summarize how "spread out" our sample is, etc.)

Leadup

- Intuitively (as was mentioned at the beginning of this lecture), the sample mean seems like a pretty good proxy for the population mean.
- Conversely, the sample variance might not give us a lot of information about the population mean (unless we have a very specific distribution).
- So, our intuition is telling us that the sample mean is doing a better job of summarizing information about μ (the population mean) than the sample variance.
- Can we make this more explicit?

Leadup

- Well, the answer is "yes" and we've actually taken some pretty good steps to making our intuition more explicit, by way of estimation!
- Said differently, used as an estimator for μ , \overline{Y}_n possess *many* more desirable properties than, say, *S* 2 *n* .
	- \bullet For examp<u>l</u>e, \overline{Y}_n is an unbiased estimator for μ whereas $\mathsf{S}_n^{\mathsf{2}}$ is, in general, not.
	- \bullet Similarly, \overline{Y}_n is a consistent estimator for μ whereas S^2_n is, in general, not.
- But let's see if there's perhaps a *different* way to quantify our intuitions.

- This is all very abstract let's make things more concrete.
- Specifically, suppose Y₁, \cdots , Y_n $\stackrel{\textup{i.i.d.}}{\sim}$ Bern(θ).
	- \bullet In other words, you can imagine Y_i to be the outcome of tossing a coin once and observing whether it landed on heads or tails, where θ represents the probability the coin will lands "heads" on any particular toss.
- \bullet One statistic we could consider is $U := \sum_{i=1}^n Y_i.$
	- In words, *U* denotes the number of heads in the *n* coin tosses.
- Does *U* capture the maximal amount of information about θ? That is, can we gain any further information about θ by looking at other statistics?

- Here is one way to answer this question: let's look at the distribution of $(Y_1, \dots, Y_n | U)$.
- Before we do, let's convince ourselves that examining this distribution is a good idea.
- \bullet If the distribution of $(Y_1, \cdots, Y_n \mid U)$ does not depend on θ , then, in essence, *U* will have captured all of the necessary information about θ.
	- Remember that the distribution of $(X | Y)$ can be interpreted as our beliefs on *X* after knowing *Y*.
	- \bullet Saying that the distribution of $(Y_1, \cdots, Y_n \mid U)$ doesn't depend on θ means, after knowing *U*, our beliefs on (*Y*¹ , · · · , *Yn*) no longer depend on θ.

- Alright, let's go!
- Specifically, we examine $\mathbb{P}(Y_1 = y_1, \dots, Y_1 = y_n | U = u)$.
- We're conditioning on an event with nonzero probability, meaning we can invoke the definition of conditional probability to write

$$
\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n \mid U = u) = \frac{\mathbb{P}(Y_1 = y_1, \cdots, Y_1 = y_n, U = u)}{\mathbb{P}(U = u)}
$$

 \bullet Since $Y_1,\cdots,Y_n\stackrel{\textup{i.i.d.}}{\sim}\textup{Bern}(\theta)$, we know that $U:=(\sum_{i=1}^n Y_i)\sim\textup{Bin}(n,\theta)$, meaning

$$
\mathbb{P}(U=u)=\binom{n}{u}\theta^u(1-\theta)^{n-u}
$$

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 9/35

- What about the numerator, $\mathbb{P}(Y_1 = y_1, \dots, Y_1 = y_n, U = u)$?
- $\bullet\,$ Well, if $\sum_{i=1}^n y_i\neq u$, the probability is zero.
	- Here's how we can think through this: say $n = 3$, and $y_1 = 1$, $y_2 = 0$, $y_3 = 0$. (That is, the first coin landed heads, the second landed tails, and the third landed tails).
	- What's the probability of the first coin landing heads, the second landing tails, the third landing tails, and observing a total number of heads that is not equal to 1 (i.e. $1 + 0 + 0$)?
	- The answer is zero!

 \bullet If $\sum_{i=1}^n y_i = u$, the event we're taking the probability of is

$$
\{Y_1=y_1,\cdots,Y_n=y_n,U=u\}
$$

which is just the probability of an independent sequences of zeros and ones with a total of *u* ones and $(n - u)$ zeroes.

• That is,

$$
\mathbb{P}(Y_1=y_1,\cdots,Y_n=y_n,U=u)=\theta^u(1-\theta)^{n-u}
$$

• So, in all,

$$
\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n \mid U = u) = \begin{cases} \theta^u (1 - \theta)^{n-u} & \text{if } \sum_{i=1}^n y_i = u \\ 0 & \text{otherwise} \end{cases}
$$

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 11/35

• Therefore, dividing by $\mathbb{P}(U=u) = \binom{n}{u}$ $\int_a^n \theta^u (1-\theta)^{n-u}$, we have

$$
\mathbb{P}(Y_1 = y_1, \cdots, Y_n = y_n, U = u) = \begin{cases} \frac{1}{\binom{n}{u}} & \text{if } \sum_{i=1}^n y_i = u \\ 0 & \text{otherwise} \end{cases}
$$

- So, does this distribution depend on θ ?
- Nope! So, after conditioning on $\pmb{\nu} := \sum_{i=1}^n \pmb{\mathsf{Y}}_i$, we have removed all dependency on θ - said differently, *U* has captured all of the necessary information about θ .

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 12/35

Sufficiency

Definition (Sufficiency)

Let Y_1, \dots, Y_n denote a random sample from a distribution with parameter θ. A statistic *U* := *g*(*Y*¹ , · · · , *Yn*) is said to be **sufficient** for θ if the conditional distribution $(Y_1,\cdots,Y_n\mid U)$ does not depend on θ .

Sufficiency

- Now, we almost never use the definition of sufficiency.
- Firstly, it only allows us to check whether a given statistic is sufficient - not how to actually *find* a sufficient statistic.
- Furthermore, it requires us to find conditional distributions which are, in general, not particularly easy to find.
- As such, in practice, we rely more heavily on the following theorem:

Factorization Theorem

Theorem (Factorization Theorem)

Let *U* be a statistic based on the random sample $\vec{Y} = (Y_1, \cdots, Y_n)$. Then *U* is a sufficient statistic for the estimation of a parameter θ if and only if the likelihood $\mathcal{L}_{\vec{\mathsf{Y}}}(\theta)$ factors as

$$
\mathcal{L}_{\vec{\mathbf{Y}}}(\theta) = g(\mathsf{U}, \theta) \times h(\vec{\mathbf{Y}})
$$

where $q(U, \theta)$ is a function of only *U* and θ (and possibly fundamental constants) and $h(\vec{Y})$ does *not* depend on θ .

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 15/35

Example

Let $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Bern}(\theta)$, where $\theta \in (0,1)$ is an unknown parameter. Show that $\bm{\mathsf{U}} := \sum_{i=1}^n \bm{\mathsf{Y}}_i$ is a sufficient statistic for $\theta.$

• We've actually already shown this using the definition of sufficiency (at the start of today's lecture) - let's show this again, this time using the Factorization Theorem.

$$
\mathcal{L}_{\vec{\mathbf{Y}}}(\theta) = \prod_{i=1}^{n} p(Y_i; \theta) = \prod_{i=1}^{n} \left[\theta^{Y_i} (1 - \theta)^{1 - Y_i} \right]
$$

$$
= \theta^{\sum_{i=1}^{n} Y_i} \cdot (1 - \theta)^{n - \sum_{i=1}^{n} Y_i}
$$

$$
= \underbrace{\left[\theta^{\sum_{i=1}^{n} Y_i} \cdot (1 - \theta)^{n - \sum_{i=1}^{n} Y_i} \right] \times \underbrace{\left[1 \right]}_{:=h(\vec{\mathbf{Y}})}
$$

$$
= \underbrace{\theta^{\sum_{i=1}^{n} Y_i} \cdot (1 - \theta)^{n - \sum_{i=1}^{n} Y_i}}_{:=h(\vec{\mathbf{Y}})}
$$

where $\bm{g}(\bm{U}, \theta) = \theta^{\bm{U}} \cdot (\bm{1} - \theta)^{n - \bm{U}}$ and $\bm{h}(\vec{\bm{Y}}) = \bm{1}.$ Therefore, by the Factorization Theorem, $\bm{U} := \sum_{i=1}^n Y_i$ is a sufficient statistic for $\theta.$

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 17/35

Example Let $Y_1,\cdots,Y_n\stackrel{\textup{i.i.d.}}{\sim}\textup{Exp}(\theta)$, where $\theta>$ 0 is an unknown parameter. Propose a sufficient statistic for θ , and show that it is sufficient.

• We'll do this one on the board.

Questions (to be answered together)

- **Question:** are sufficient statistics unique?
- **Question:** do sufficient statistics always exist?
- Let's discuss!

[MVUEs](#page-21-0)

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 20/35

Leadup

- Alright, let's dip our toes back into the realm of estimation.
- Recall that, a few lectures ago, I tried to convince everyone that one notion of an "ideal" estimator should be unbiased and with as little variance as possible.
- Let's run with this idea a bit!
- Indeed, we have the notion of a **Minimum Variance Unbiased Estimator** (MVUE) as a sort of "gold-standard" estimator.
- As the name suggests, an MVUE is an estimator that is unbiased and possesses the smallest possible variance.

Leadup

- "Smallest possible variance.-" is it possible to get an unbiased estimator with zero variance?
- It turns out (and the reasoning behind *why* is outside the scope of this course) the answer is, in general, "no."
- Indeed, there exists a lower bound for the variance of *any* unbiased estimator, called the **Cramér-Rao Lower Bound** (CRLB).

Cramér-Rao Lower Bound

Theorem (Cramér-Rao Lower Bound)

Consider an i.i.d. sample Y_1, \cdots, Y_n from a distribution with unknown parameter θ . Under appropriate "regularity conditions". every unbiased estimator $\widehat{\theta}$ obeys the inequality

$$
\textsf{Var}(\widehat{\theta}) \geq \frac{1}{\mathcal{I}_n(\theta)}
$$

where

$$
\mathcal{I}_n(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2} \ell_{\vec{\mathbf{V}}}(\theta)\right]
$$

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 23/35

Some Terminology

- The Cramér-Rao Lower Bound refers to the lower bound on the variance, $[\mathcal{I}_n(\theta)]^{-1}$.
- The term $\mathcal{I}_n(\theta)$ is referred to as the **Fisher Information** of the sample \vec{Y} . Note that the fisher information is the expectation of the negative second-derivative of the log-likelihood of the sample.
- Note that the CRLB is not a strict inequality, meaning that certain estimators actually achieve the lower bound. An estimator that achieves the CRLB (i.e. an estimator satisfying Var $(\hat{\theta}) = [\mathcal{I}_n(\theta)]^{-1}$) is said to be a **efficient** estimator.

A Note

• The Cramér-Rao Lower Bound only applies to *unbiased* estimators. It is possible to construct *biased* estimators that have variance smaller than the CRLB (a very popular example of such an estimator, used throughout a wide array of different disciplines, is the so-called "James-Stein estimator")

Example Let $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\theta)$, where $\theta > \text{o}$ is an unknown parameter. (a) Find the lowest attainable variance by an unbiased estimator for θ . (b) Is the estimator $\widehat{\theta}_n := \overline{Y}_n$ an efficient estimator for θ ?

- Part (a) is essentially just asking us to compute the CRLB.
- From previous work, we have that the log-likelihood of the sample is given by

$$
\ell_{\vec{\mathbf{y}}}(\theta) = -n \ln(\theta) - \frac{1}{\theta} \sum_{i=1}^{n} Y_i + \sum_{i=1}^{n} \ln \mathbb{1}_{\{Y_i \geq 0\}}
$$

• We now take the first and second derivatives:

• The Fisher Information is just the expectation of this last quantity:

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 28/35

$$
\mathcal{I}_n(\theta) = \mathbb{E}\left[-\frac{\partial^2}{\partial \theta^2} \ell_{\vec{\mathbf{y}}}(\theta)\right]
$$

=
$$
\mathbb{E}\left[-\frac{n}{\theta^2} + \frac{2}{\theta^3} \sum_{i=1}^n Y_i\right]
$$

=
$$
-\frac{n}{\theta^2} + \frac{2}{\theta^3} \sum_{i=1}^n \mathbb{E}[Y_i] = -\frac{n}{\theta^2} + \frac{2n}{\theta^2} = \frac{n}{\theta^2}
$$

 \bullet The CRLB is just the reciprocal of this last quantity: θ^2/n .

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 29/35

- So, in other words, *an*y unbiased estimator for θ (in the context of the exponential distribution) will have variance greater than or equal to θ^2/n .
- To answer part (b), first note that $\widehat{\theta}_n := \overline{Y}_n$ is an unbiased estimator for θ . Hence, we simply need to check whether or not its variance attains the CRLB \cdot

$$
Var(\widehat{\theta}_n) = Var(\overline{Y}_n) = \frac{Var(Y_1)}{n} = \frac{\theta^2}{n}
$$

• Since this is exactly equal to the CRLB, we conclude that \overline{Y}_n is a efficient estimator for θ .

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 30/35

- Finally, let's try and tie the notion of efficiency back to our initial discussions on MVUEs.
- First note: perhaps counterintuitively, it's possible that the MVUE in a given situation *won't* be efficient. We won't worry too much about why that is, for the purposes of this class.
- I would, however, like to stress that we would like to construct an unbiased estimator that has as low variance as possible.
- So, given an estimator $\widehat{\theta}_1$ for a parameter θ , is it possible to "improve" (i.e. obtain a new estimator $\widehat{\theta}_2$ with a lower variance than $\widehat{\theta}_1$?) Yes!

Rao-Blackwell Theorem

Theorem (Rao-Blackwell Theorem)

Let $\widehat{\theta}_1$ be an unbiased estimator for θ with finite variance. If *U* is a sufficient statistic for θ , define $\widehat\theta_2:=\mathbb{E}[\widehat\theta_1\mid\textit{U}].$ Then, for all θ ,

$$
\mathbb{E}[\widehat{\theta}_2] = \theta \qquad \text{and} \qquad \text{Var}(\widehat{\theta}_2) \leq \text{Var}(\widehat{\theta}_1)
$$

• So, given an initial unbiased estimator $\widehat{\theta}_1$ and a sufficient statistic *U*, we can "improve" (or, at least, never do worse) by conditioning our unbiased estimator on our sufficient statistic.

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 32/35

Rao-Blackwell Theorem

- Now, in practice, using the Rao-Blackwell theorem can be a bit tricky, mainly due to the intractability of some of the conditional expectations it requires us to compute.
	- I walk you through one particular example in problem 4 of your HW05
- However, the Rao-Blackwell Theorem can be used to tell us that the following procedure generally gives us an MVUE:
- Say we have a sufficient statistic *U* that best summarizes our data. Additionally, say we have an estimator $\widehat{\theta} := h(U)$ that is unbiased for θ. Then, typically, $\widehat{\theta}$ will be an MVUE.

Rao-Blackwell Theorem

- Of course, there are some details missing. For one, it turns out that even among sufficient statistics, some are "better" at capturing the information about a parameter than others. (These are called **minimal sufficient statistics**, which we won't cover in this course.)
	- So, it's really a function of a *minimal* sufficient statistic that will give us the MVUE in a given situation.
	- But, again, for the purposes of this class, we won't concern ourselves with this too much.
- Indeed, in general, constructing MVUEs can be a pain! But, it's useful to at least know about their existence, and how sufficiency and the Rao-Blackwell theorem tie into constructing them.

Example

Let $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \textsf{Unif[0,\theta]},$ where $\theta > \textsf{o}$ is an unknown parameter.

- (a) Show that $Y_{(n)}$ is a sufficient statistic for $\theta.$ (It turns out that this is a *minimal* sufficient statistic for θ , but you do not need to show that.)
- (b) Find an MVUE for θ .
	- Try this on your own, and feel free to ask me about it during Office Hours!

[Topic 4](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 35/35