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Leadup

• Let’s go on a fishing trip!
• Say we saw a fish in a specific spot in a lake.
• To catch a fish, we could simply throw a spear right where we saw our

last fish.
• But... is that really the most efficient way to catch a fish?
• Wouldn’t it be better to cast a net, somewhere around where we saw

our last fish, to try and increase our odds of catching at least one fish?
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Leadup

• In many ways, estimation is like fishing.
• The true value of the population parameter is analogous to our fish.
• Constructing a single estimate from a single estimator (constructed

from a single sample) is like throwing a spear - our estimate is a
single value, which we hope is pretty close to the true value of the
population parameter.

• So, what’s the analog of casting a net in estimation?
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Confidence Intervals
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Interval Estimators

• To make things more mathematical, suppose we have an i.i.d. sample
Y⃗ := {Yi}ni=1 from a population with parameter θ.

• Previously, we constructed point estimators θ̂n which, in the language
of our textbook, are rules we can use to generate numerical
estimates of θ.

• We’ll now turn our attention to interval estimators (often referred to
as confidence intervals), which we hope will cover the true value of θ.
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Interval Estimators

• As the name suggests, an interval estimator is a random interval.
That is, it is an interval of the form[

θ̂L , θ̂U

]
where θ̂L and θ̂U are random variables.

• Note that the endpoints of a confidence interval are random.
• The lower endpoint, θ̂L, is often referred to as the lower confidence limit and

the upper endpoint, θ̂u, is often referred to as the upper confidence limit.
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Interval Estimators
• As I mentioned at the start of this discussion, we want to have some

degree of certainty that the interval [θ̂L , θ̂U] covers the true value of θ.
• Since our interval is random, it makes sense to talk about the

coverage probability (aka confidence coefficient), defined to be

P(θ̂L ≤ θ ≤ θ̂U)

• So, for example, a 95% confidence interval (i.e. a confidence interval
with 95% coverage probability) is one such that

P(θ̂L ≤ θ ≤ θ̂U) = 0.95

i.e. an interval [θ̂L , θ̂U] that we are 95% certain covers the true value
of θ.
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Example: Population Mean
• As a somewhat more concrete example, let’s return to our problem of

trying to estimate the true average weight of a randomly-selected
DSH cat.

• Assuming Y1, · · · , Yn denotes an i.i.d. sample of cat weights following
some distribution with unknown parameter µ, a (1 − α)× 100%
confidence interval for µ is an interval [µ̂L , µ̂U] such that

P(µ̂L ≤ µ ≤ µ̂U) = 1 − α

where 1 − α denotes the coverage probability. (The reason why we
use (1 − α) will become clear next week, after we discuss Hypothesis
Testing.)
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Example: Population Mean

• Can anyone give me a 100% confidence interval for µ?
• Sure: (−∞,∞). I am 100% sure that the true average weight of a

randomly-selected DSH cat lies somewhere between −∞ and ∞.
• Indeed, even [0,∞) would be a 100% confidence interval for µ, based on the

physical constraints of our problem but we can ignore that for now.
• Alright, but this is an (effectively) useless interval! But, this highlights

something important: there is a tradeoff between coverage
probability and the width of our confidence interval. Higher coverage
probabilities necessitate larger and larger confidence intervals - this
is why it’s not really practical to construct a 100% confidence interval.
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Confidence Intervals

• Alright, so let’s start constructing confidence intervals!
• I’m going to break our considerations into two: first we’ll talk about

constructing confidence intervals assuming a normally-distributed
population, and then we’ll relax the normality assumption and
discuss ways to construct confidence intervals for more general
distributions.
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Normal Confidence Intervals
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First Goal

Goal

Given Y1, · · · , Yn
i.i.d.∼ N (µ, σ2) for an unknown µ ∈ R but a known

σ2 > 0, we want to construct a (1−α)× 100% confidence interval
for µ.
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Sample Mean

• Now, again, we know that the sample mean Yn is a very good point
estimator for µ.

• Again, it’s an unbiased and consistent estimator for µ, as well as a sufficient
statistic for µ.

• Of course, there’s no guarantee that for any particlar sample, Yn will
be exactly equal to µ (hence why we’re trying to construct intervals
now!)

• But, consistency more or less tells us that Yn will probably be quite
close to the true value of µ.
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Sample Mean
• So, it makes sense to construct our interval by taking Yn (which,

again, will likely be very close to the true value of µ), and adding and
subtracting some margin of error (think of it like padding).

• In other words, we’ll take our interval to be

Yn ± m.e. =
[
Yn − m.e. , Yn + m.e

]
where “m.e.” stands for margin of error (i.e. the half-width of our
confidence interval).

• Since we’re constructing a (1−α)× 100% confidence interval, we want

P(Yn − m.e. ≤ µ ≤ Yn + m.e.) = 1 − α
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Sample Mean

• So, our problem essentially boils down to finding the appropriate
value of m.e. such that the above equation holds.

• Let’s try and simplify our probability on the LHS a bit. I find it useful
to consider each inequality separately.

• P(Yn − m.e. ≤ µ) = P(Yn ≤ µ+ m.e.)
• P(µ ≤ Yn + m.e.) = P(Yn ≥ µ− m.e.)
• So, what we have is

P(Yn − m.e. ≤ µ ≤ Yn + m.e.) = P(µ− m.e. ≤ Yn ≤ µ+ m.e.)
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Sample Mean

• Again, we are trying to select m.e. such that this whole probability
equals 1 − α:

P(µ− m.e. ≤ Yn ≤ µ+ m.e.) = 1 − α

• Now, we know that Yn ∼ N (µ, σ2/n). So, it seems tempting to
standardize the RHS!
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Sample Mean
• That is:

P(µ− m.e. ≤ Yn ≤ µ+ m.e.) = P
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Confidence Interval for the Mean; Known
Variance

Theorem (CI for µ; Known Variance)

Given Y1, · · · , Yn
i.i.d.∼ N (µ, σ2) where µ ∈ R is unknown but σ2 > 0

is known, a (1 − α)× 100% confidence interval for µ is given by
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Example
The weight of a croissant from Le Gaucho (in grams) is normally
distributed about some unknown mean µ and known standard deviation
2 grams. An i.i.d. sample of 8 croissants from Le Gaucho is taken, and
their weights (in grams) are as follows:

63.5, 64.5, 65.1, 68.9, 69.9, 70.1, 72.3, 72.4

(a) Construct a 90% confidence interval for µ, based on the data that was
collected. You may leave your answer in terms of Φ−1(·), the inverse
of the standard normal CDF.

(b) Would a 80% confidence interval for µ be wider or narrower than the
interval you constructed in part (a)?
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Solutions
• We only need to plug into our formula from above!
• Firstly, the sample mean is easily computed to be y8 = 68.3375 g.
• Now, a 90% confidence interval is equivalent to a (1 − 0.1)× 100%

confidence interval, meaning we plug α = 0.1 into our CI formula from
above:

yn ± Φ−1
(

1 − α

2

)
· σ√

n
= 68.3375 ± Φ−1(0.95) · 2√

8

• With a computer software, we can compute this to be
[67.17441 , 69.50059] - that is, we are 95% confident that the true
average weight of a Le Gaucho croissant is between 67.17441 grams
and 69.50059 grams (notice the wording of our conclusion!)
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Solutions

• For part (b), we need only to remember our discussion from earlier,
about the relationship between the width of a CI and our coverage
probability.

• Higher coverage probabilities necessitate wider intervals.
• Since an 80% coverage probability is less than a 95% coverage

probability, we expect an 80% confidence interval to be narrower
than a 95% confidence interval.

• If you’re curious, you can construct an 80% confidence interval which
you should find to be around [67.43131 , 69.24369], which is indeed
narrower than our interval from part (a).
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Second Goal

Goal

Given Y1, · · · , Yn
i.i.d.∼ N (µ, σ2) for an unknown µ ∈ R and an un-

known σ2 > 0, we want to construct a (1 − α)× 100% confidence
interval for µ.
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Second Goal
• Let’s still consider an interval for the form

Yn ± m.e.
• Re-using some of the work we did in the previous case (where σ2 was

known), we have

P
(
µ− m.e. ≤ Yn ≤ µ+ m.e.

)
= 1 − α

• Before, we standardized because we knew that Yn ∼ N (µ, σ2/n).
• But, even though this is true, this fact doesn’t really help us in

practice since the value of σ is unknown!
• So, here’s our clever idea - let’s replace σ with a “good” estimator for

it - namely, Sn (the sample standard deviation).
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Second Goal

• This works out well, because(
Yn − µ

Sn/
√
n

)
∼ tn−1

by our “Modified Standardization Result” from our lecture on
multivariate transformations involving the normal distribution.
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Second Goal
• So:
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Confidence Interval for the Mean;
Unknown Variance

Theorem (CI for µ; Unknown Variance)

Given Y1, · · · , Yn
i.i.d.∼ N (µ, σ2) where both µ ∈ R and σ2 > 0 are

unknown, a (1 − α)× 100% confidence interval for µ is given by
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Example
Assume the same setup as the previous croissant example, except now
assume that σ2 is unknown. Construct a 95% CI for µ, the true average
weight of a Le Gaucho croissant.

• We still have yn = 68.3375 g. We also have s8 = 3.518903. Therefore,
plugging into our formula from the previous slide, our CI is

68.3375 ± F−1
t7 (0.975) · 3.518903√

8

which, using a computer software, amounts to around
[65.39562 , 71.27938].
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Asymptotic Confidence Intervals for the
Mean

• Note that the CLT enables us to relatively easily construct
large-sample (i.e. asymptotic) confidence intervals for the mean.

• That is, we know that regardless of our population distribution
(assuming finite mean and variance),

√
n(Yn − µ)

σ
⇝ N (0, 1)

• You’ll work through some problems relating to this on the next (and
final!) homework.
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Interpreting Confidence Intervals

• One interpretation of an (1 − α)× 100% confidence interval [a,b] is:
“we are (1 − α)× 100% certain that the interval [a,b] contains the
true value of θ.”

• So, for example, a 95% CI for a population mean µ can be interpreted as an
interval that we are 95% certain covers the true value of µ.

• There is another interesting way to interpret CIs: If the same
procedure was used many times, each individual interval would
either contain or fail to contain the true value of θ, but the
percentage of all intervals that capture θ would be very close to
(1 − α)× 100%. (This is the wording taken from the textbook.) Let’s
see this in action by way of a live demo.
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