

Topic 5: Confidence Intervals

Ethan P. Marzban University of California, Santa Barbara PSTAT 120B

Outline

1. [Asymptotic Confidence Intervals using the MLE](#page-2-0)

2. [Non-Normal Confidence Intervals](#page-5-0)

[Asymptotic Confidence Intervals using the MLE](#page-2-0)

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 1/36

Result

Theorem (Asymptotic MLE Result)

Given an i.i.d. sample \vec{Y} from a sample with unknown parameter θ and $\widehat{\theta}_{\text{MLF}}$, the maximum likelihood estimator for θ , we have, under certain "regularity conditions," that

$$
\frac{\tau(\widehat{\theta}_{MLE})-\tau(\theta)}{\sqrt{\frac{[\tau'(\theta)]^2}{\mathcal{I}_n(\theta)}}} \rightsquigarrow \mathcal{N}(0,1)
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 2/36

Example

Example

Let $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\theta)$ for some unknown $\theta > \text{o.}$ Find the MLE for the population variance, and use this to construct a large-sample 95% confidence interval.

[Non-Normal Confidence Intervals](#page-5-0)

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 4/36

Leadup

- Last time, we discussed how to construct confidence intervals under the assumption of a normally-distributed population. What do we do if our population is *not* normally distributed?
- For example, if $Y_1, \cdots, Y_n \stackrel{\text{i.i.d.}}{\sim} \text{Exp}(\theta)$, how might we construct a $(1 - \alpha) \times 100\%$ confidence interval for θ ?
- Well, there are quite a few options available to us!
- One of the most popular ways of constructing CIs is called the **pivotal method** (or **method of pivots**).

Pivots

Definition (Pivot)

Given a sample Y_1, \cdots, Y_n from a distribution with unknown parameter θ , we define a **pivot** (or **pivotal quantity**) for θ to be a function $U := q(\vec{Y}, \theta)$ whose distribution doesn't depend on θ .

• So, for example, if $Y_1, \cdots, Y_n \stackrel{\mathsf{i.i.d.}}{\sim} \mathcal{N}(\mu, 1)$, then $\boldsymbol{\mathsf{U}} := \sqrt{n}(\overline{Y}_n - \mu)$ is a pivot for μ since its distribution doesn't depend on μ .

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 6/36

Constructing CIs using the Pivotal Method

- \bullet Consider a sample Y_1, \cdots, Y_n from a distribution with unknown parameter θ , and assume $U(\vec{Y}, \theta)$ is a pivotal quantity. Here's how we use the notion of a pivotal quantity to construct a $(1 - \alpha) \times 100\%$ confidence interval for θ :
- (1) Set up the interval $\left\{a\leq\mathsf{U}(\vec{\mathsf{Y}},\theta)\leq b\right\}$, and use the distribution of $U(\vec{Y}, \theta)$ to find *a* and *b* such that

$$
\mathbb{P}(\textit{a} \leq \textit{U}(\vec{\bm{Y}}, \theta) \leq \textit{b}) = \textit{1} - \alpha
$$

(2) Invert the interval $\left\{a\leq\mathsf{U}(\vec{\mathsf{Y}},\theta)\leq b\right\}$ to be of the form $\{\widehat{\theta_\mathsf{L}}\leq\theta\leq\widehat{\theta}_\mathsf{U}\},$ for random variables $\widehat{\theta}_L$ and $\widehat{\theta}_U$ that depend on $U(\vec{Y}, \theta)$ and *a* and *b*.

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 7/36

Department of Statistics and Applied Probability

Example

Example

Suppose we have a single observation *Y* ∼ Exp $(θ)$. Construct a pivotal quantity for θ , and use this to construct a 95% confidence interval for θ .

- To find a pivotal quantity for θ , we want to find a function of *Y* and θ whose distribution doesn't depend on θ .
- As such, let's propose the following pivotal quantity: $U := (Y/\theta)$.
- To check this is a pivotal quantity, we need to find the distribution of *U*.
- But hey, we've done this a million times already (back in Topic 02 of this course)!

$$
\mathsf{U}\sim\mathsf{Exp}\left(\frac{\mathsf{1}}{\theta}\cdot\theta\right)\sim\boxed{\mathsf{Exp}(\mathsf{1})}
$$

• Because the distribution of *U* doesn't depend on θ, it is, by definition, a pivotal quantity for θ .

• So, our 95% CI will take the form

$$
\left\{a\leq \frac{\mathsf{Y}}{\theta}\leq b\right\}
$$

for constants *a* and *b* such that

$$
\mathbb{P}\left(a\leq \frac{\gamma}{\theta}\leq b\right)=0.95
$$

• Let's pause, and sketch a picture.

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 10/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 11/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 12/36

- So, we want $\mathbb{P}(Y/\theta < a) = \alpha/2$ and $\mathbb{P}(Y/\theta > b) = \alpha/2$.
- Well, since we know the distribution of (Y/θ) , we can compute these probabilities directly!

$$
\mathbb{P}\left(\frac{\mathsf{Y}}{\theta}\n
$$
\mathbb{P}\left(\frac{\mathsf{Y}}{\theta}>b\right)=\int_b^{\infty} f_U(u) \, \mathrm{d}u=\int_b^{\infty} e^{-u} \, \mathrm{d}u=e^{-b}
$$
$$

• Hence, 1 – $e^{-a} = \alpha/2$ and $e^{-b} = \alpha/2$. Equivalently: $a = \ln \left(\frac{2}{2} \right)$ $\frac{2}{2-\alpha} \big)$ and $b = \ln \left(\frac{2}{\alpha} \right)$ $\frac{2}{\alpha}$).

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 13/36

- The final piece of the puzzle is to invert our interval.
- Let me quickly explain what I mean by this. The interval we started with is

$$
\left\{a\leq \frac{\mathsf{y}}{\theta}\leq b\right\}
$$

where *a* and *b* are given by the quantities we just found on the previous slide

- But, this isn't the right form for a confidence interval remember that a true confidence interval needs to have random *endpoints*. Right now, our randomness (i.e. the random variable *Y*) is in the *interior* of our interval.
- But, not to fret!

•
$$
\left\{ a \le \frac{\gamma}{\theta} \right\} \implies \left\{ a\theta \le \gamma \right\} \implies \left\{ \theta \le \frac{\gamma}{a} \right\}
$$

• $\left\{ \frac{\gamma}{\theta} \le b \right\} \implies \left\{ \gamma \le \theta b \right\} \implies \left\{ \theta \ge \frac{\gamma}{b} \theta \right\}$

• So, combining everything:

$$
\left\{\alpha \leq \frac{\gamma}{\theta} \leq b\right\} \implies \left\{\frac{\gamma}{b} \leq \theta \leq \frac{\gamma}{a}\right\}
$$

• This is now the right form for a CI - the randomness is in the endpoints!

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 15/36

• So, all in all, our (1 – α) × 100% confidence interval for θ takes the form *Y Y* 1

b ,

a

or, substituting in our expressions for *a* and *b*:

$$
\left[\frac{\gamma}{\ln\left(\frac{2}{\alpha}\right)}\,,\,\frac{\gamma}{\ln\left(\frac{2}{2-\alpha}\right)}\right]
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 16/36

Example

Example

The wait time of a randomly-selected person at *The Arbor* is assumed to follow an exponential distribution with parameter θ . If a single person was selected at random, and it was observed that they spent 3 minutes waiting in line at *The Arbor*, construct a 95% confidence interval for θ, the true average wait times at *The Arbor*.

• All we need to do is plug into our CI from the previous example!

$$
\left[\frac{3}{\ln\left(\frac{2}{0.05}\right)}\,,\,\frac{3}{\ln\left(\frac{2}{2-0.05}\right)}\right] = \left[0.813\,,\,118.494\right]
$$

• If that looks like a really wide interval.. it's because it is! But, remember that we only had a single sample. So, intuitively, it perhaps makes sense that our CI should be pretty wide.

Example

Example

Suppose $Y_1,\cdots,Y_n \stackrel{\textup{i.i.d.}}{\sim} \textup{Exp}(\theta)$, where $\theta>$ 0 is an unknown parameter.

- (a) Propose a pivotal quantity for θ that is a function of $\sum_{i=1}^n \mathsf{Y}_i$, and show that your proposed quantity is in fact a pivot for θ .
- (b) Use your pivot from part (a) to construct a $(1 \alpha) \times 100\%$ confidence interval for θ .

- $\bullet\,$ We know that $(\sum_{i=1}^n\mathsf{Y}_i)\sim\mathsf{Gamma}(n,\theta).$
- \bullet Therefore, $(1/\theta)(\sum_{i=1}^n Y_i) = [\sum_{i=1}^n (Y_i/\theta)] \sim \mathsf{Gamma}(n,1)$, which doesn't depend on θ .
- Hence, a pivotal quantity for θ involving $\sum_{i=1}^n \mathsf{Y}_i$ is

$$
U:=\sum_{i=1}^n\left(\frac{Y_i}{\theta}\right)
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 20/36

- Is this the only pivotal quantity for θ that involves $\sum_{i=1}^n Y_i$? No! In fact, we can multiply *U* by any positive constant [that doesn't depend on θ] and get another pivotal quantity for θ .
- For example,

$$
U_2:=2\sum_{i=1}^n\left(\frac{Y_i}{\theta}\right)\sim \text{Gamma}\left(n,2\right)\sim \chi^2_{2n}
$$

thereby showing that U_2 is also a pivotal quantity for θ .

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 21/36

- Let's start off by using U_2 to construct a $(1 \alpha) \times 100\%$ CI for θ .
- Our initial interval takes the form

$$
\left\{a\leq 2\sum_{i=1}^n\left(\frac{Y_i}{\theta}\right)\leq b\right\}
$$

• By the definnition of coverage probability, we seek *a* and *b* such that

$$
\mathbb{P}\left(a \leq 2\sum_{i=1}^n \left(\frac{Y_i}{\theta}\right) \leq b\right) = 1 - \alpha
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 22/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 23/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 24/36

• So, we want

$$
\mathbb{P}(U_2 < a) = \frac{\alpha}{2} \qquad \text{and} \qquad \mathbb{P}(U_2 > b) = \frac{\alpha}{2}
$$

• Now, we don't have a simply closed-form expression for the CDF of the χ^2_{2n} distribution. But that's fine - we can still write

$$
a = F_{\chi_{2n}^2}^{-1}\left(\frac{\alpha}{2}\right) \qquad \text{and} \qquad b = F_{\chi_{2n}^2}^{-1}\left(1-\frac{\alpha}{2}\right)
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 25/36

• Finally, we invert the interval.

$$
\bullet \left\{ a \leq \frac{2}{\theta} \sum_{i=1}^{n} Y_i \right\} \implies \left\{ \theta \leq \frac{2}{a} \sum_{i=1}^{n} Y_i \right\}
$$

$$
\bullet \left\{ \frac{2}{\theta} \sum_{i=1}^{n} Y_i \leq b \right\} \implies \left\{ \theta \geq \frac{2}{b} \sum_{i=1}^{n} Y_i \right\}
$$

• So, our interval is

$$
\left[\frac{2\sum_{i=1}^nY_i}{F_{\chi_{2n}^2}^{-1}\left(1-\frac{\alpha}{2}\right)}\;,\;\frac{2\sum_{i=1}^nY_i}{F_{\chi_{2n}^2}^{-1}\left(\frac{\alpha}{2}\right)}\right]
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 26/36

- Let's see what would have happened if we used our other pivotal quantity, $U_1 := (1/\theta) \sum_{i=1}^n Y_i$.
- We'd start with

$$
\left\{a\leq \frac{1}{\theta}\sum_{i=1}^n Y_i\right\}
$$

• Ultimately, we'd find (and I encourage you to fill in these steps)

$$
a=F_{Gamma(n,1)}^{-1}\left(\frac{\alpha}{2}\right); \qquad b=F_{Gamma(n,1)}^{-1}\left(1-\frac{\alpha}{2}\right)
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 27/36

• Appropriately inverting the interval (and, again, you can try this on your own), we get

$$
\left[\frac{\sum_{i=1}^{n}Y_{i}}{F_{Gamma(n,m_{\alpha}(n,1)}^{-1}\left(1-\frac{\alpha}{2}\right)}\;,\;\frac{\sum_{i=1}^{n}Y_{i}}{F_{Gamma(n,m_{\alpha}(n,1)}^{-1}\left(\frac{\alpha}{2}\right)}\right]
$$

• Do these give the same numerical values, given a particular observed dataset? Let's check!

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 28/36

- Take $n=$ 7 and $\overline{y}_{7} =$ 4.77 (so $\sum_{i=1}^{n}$ $y_{i} =$ 33.39) and adopt a 95% coverage probability.
- $\bullet\,$ Our first CI, using the χ^2_{2n} distribution, becomes

$$
\left[\frac{2(33.39)}{F_{\chi_{14}^2}^{-1}(0.975)}\;,\;\frac{2\sum_{i=1}^nY_i}{F_{\chi_{14}^2}^{-1}(0.025)}\right]=\boxed{[2.557\;,\;11.864]}
$$

• Our first CI, using the Gamma(*n*, 1) distribution, becomes

$$
\left[\frac{33.39}{F_{\text{Gamma}(7,1)}^{-1}(0.975)}\;,\;\frac{33.39}{F_{\text{Gamma}(7,1)}^{-1}(0.025)}\right] = \frac{[2.557\;,\;11.864]}{[2.557\;,\;11.864]}
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 29/36

- Finally, to tie together yesterday's lecture and today's lecture, let's see if we can actually use the pivotal method to recover the same sorts of normal-adjacent confidence intervals we constructed before.
- \bullet So, to start, let *Y*₁, \cdots , *Y*_n $\stackrel{\text{i.i.d.}}{\sim}$ ∕∕(μ , σ^2) where $\mu \in \mathbb{R}$ is unknown but $\sigma^2 > 0$ is known.
- A pivotal quantity is

$$
U:=\frac{\overline{Y}_n-\mu}{\sigma/\sqrt{n}}\sim\mathcal{N}(0,1)
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 30/36

• So our CI takes the form

$$
\left\{a\leq \frac{\overline{Y}_n-\mu}{\sigma/\sqrt{n}}\leq b\right\}
$$

• Since we want a $(1 - \alpha) \times 100\%$ coverage probability, we get

$$
\mathbb{P}\left(a\leq \frac{\overline{Y}_n-\mu}{\sigma/\sqrt{n}}\leq b\right)=1-\alpha
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 31/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 32/36

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 33/36

•
$$
\mathbb{P}\left(\frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} < a\right) = \Phi(a) \stackrel{!}{=} \frac{\alpha}{2} \implies a = \Phi^{-1}\left(\frac{\alpha}{2}\right)
$$

\n• $\mathbb{P}\left(\frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} > b\right) = 1 - \Phi(b) \stackrel{!}{=} \frac{\alpha}{2} \implies b = \Phi^{-1}\left(1 - \frac{\alpha}{2}\right)$

• Now, we invert our interval:

$$
\begin{aligned}\n\bullet \left\{ a \leq \frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} \right\} &\implies \left\{ a \cdot \frac{\sigma}{\sqrt{n}} \leq \overline{Y}_n - \mu \right\} \implies \left\{ \mu \leq \overline{Y}_n - a \cdot \frac{\sigma}{\sqrt{n}} \right\} \\
\bullet \left\{ \frac{\overline{Y}_n - \mu}{\sigma/\sqrt{n}} \leq b \right\} \left\{ \overline{Y}_n - \mu \leq b \cdot \frac{\sigma}{\sqrt{n}} \right\} &\implies \left\{ \mu \geq \overline{Y}_n - b \cdot \frac{\sigma}{\sqrt{n}} \right\}\n\end{aligned}
$$

• So our interval is equivalent to

$$
\left\{\overline{Y}_n - b \cdot \frac{\sigma}{\sqrt{n}} \leq \mu \leq \overline{Y}_n - a \cdot \frac{\sigma}{\sqrt{n}}\right\}
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 35/36

• Therefore, plugging in the values for *a* and *b* we derived earlier on, our (1 – α) × 100% CI, as derived using the method of pivotal quantities, is

$$
\left[\overline{Y}_n - \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}} , \overline{Y}_n - \Phi^{-1}\left(\frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}}\right]
$$

• Finally, note that $-\Phi^{-1}(\frac{\alpha}{2})$ $\left(\frac{\alpha}{2}\right)=\Phi^{-1}\left(1-\frac{\alpha}{2}\right)$ $\left(\frac{\alpha}{2}\right)$ to see that our interval is

$$
\left[\overline{Y}_n - \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}} \; , \; \overline{Y}_n + \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}}\right] = \frac{\overline{Y}_n \pm \Phi^{-1}\left(1 - \frac{\alpha}{2}\right) \cdot \frac{\sigma}{\sqrt{n}}
$$

[Topic 5](#page-0-0) | Ethan P. Marzban [PSTAT 120B, Sum. Sess. A, 2024](#page-0-0) Page 36/36