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Power

* Recall that « (the significance level) denotes the probability of
committing a Type | error, and 3 denotes the probability of comitting
a Type Il error.

e We can analogously define a quantity that represents the probability
that a given test will lead to rejection of the null:
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Deﬁnition (Power)

Suppose that W is the test statistic and R is the rejection region
for a test of a hypothesis involving the value of a parameter 6.
Then the power of the test, denoted by power(6), is the proba-
bility that the test will lead to rejection of H, when the actual
parameter value is . That is,

power(f) = P(W € R when the parameter value is 6)
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Power

Theorem (Relationship between Power and 3)

If 64 is a value of @ in the alternative hypothesis H,, then
power(0y) =1 — [(6a)

where 3(6,) denotes the probability of committing a Type Il error
when the true value of 4 is 0,.
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e As the notation suggests, we typically view power as a function of the
true value of 6,.

Plotting the power of a given test at a series of specified values in the
alternative space yields a so-called power curve.

Let's think through what the “ideal” power curve looks like.

What would we like power(6,) to be?

Well, since power(6,) is, by definition and for any point 6,, the
probability of rejecting H, : 0 = 6, when the true value of 4 is 6,, we'd
like power(6,) = O.
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Power

* Similarly, for any 6, # 6, we'd like power(6,) = 1.
 So, the ideal power curve for a test would look like

power(6,)

1
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Power
* Now, keep in mind that all tests are performed at a fixed « level of

significance.
e As we discussed before, it's impossible to simultaneously minimize «

and 3 - hence, it's impossible to get a power of exactly zero.
e A more realistic power curve for atest of Hy : 0 = 6, vs Ha : 0 # 6,
might look like
power(6,)
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Example

Example
ii.d.

LetY,,--- .Y, =~ N(u,1) for some unknown i € R, and suppose we wish
to conduct a test of Ho : pt = 1o VS Hp : 1 > pio @t an a = 0.05 level of
significance. We propose two tests:

Test 1: Reject H, when Y, — o > ¢7'(0.975)

. Yn — o
Test 2: Reject Ho when —————
J o 1/\/ﬁ
Derive expressions for the power functions for these two tests, and use
this to determine if one test outperforms the other in terms of power for
all values of 6 in the alternative.
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Power
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Power

* Since we want the power of our test to be 1 nearly everywhere, we
often seek uniformly most powerful tests.

* In general, finding such tests is very challenging (and, indeed, such
tests don’t always exist).

e However, if we restrict ourselves to a simple-vs-simple test, we
actually can construct a most powerful test at a level o, using what is
known as the Neyman-Pearson Lemma.
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Neyman-Pearson Lemma

* Since we want the power of our test to be 1 nearly everywhere, we
often seek uniformly most powerful tests.

* In general, finding such tests is very challenging (and, indeed, such
tests don’t always exist).

e However, if we restrict ourselves to a simple-vs-simple test, we
actually can construct a most powerful test at a level «, using what is
known as the Neyman-Pearson Lemma.
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Neyman-Pearson Lemma

THEOREM 10.1 The Neyman—-Pearson Lemma Suppose that we wish to test the simple null
hypothesis Hj:0 = 6y versus the simple alterative hypothesis H, :60 = 6,,
based on a random sample Y3, Y5, .. ., ¥, from a distribution with parameter 6.
Let L(0) denote the likelihood of the sample when the value of the parameter
is 6. Then, for a given «, the test that maximizes the power at 6, has a rejection
region, RR, determined by

L(6o)
L)

< k.

The value of & is chosen so that the test has the desired value for . Such a test
is a most powerful «-level test for Hy versus H,.
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Neyman-Pearson Lemma

* So, in the simple-vs-simple case (i.e. Ho : @ = 0, Vs Hy : 6 = 0, for
some 0, # 6,), we not only have the existence of a most powerful
test, but we have its form!

* Indeed, the particular test described in the Neyman-Pearson Lemma
is a special case of a broader class of tests, known as
Likelihood Ratio Tests (LRTs).
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Likelihood Ratio Test

Definition (Likelihood Ratio Test)

Consider hypotheses H, : 0 € Q, and Hy : 6 € Q4. Define

£G,)  axLy(6)

L(Q) ~ max_ Ly(0)

0€QoUQ,

A likelihood ratio test (named as such because we call A a
likelihood ratio) rejects H, whenever {A < R}.
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Likelihood Ratio Test ‘J ‘

* Note that the denominator is the maximum value of the likelihood,
over the entire parameter space.

 As such, in many cases we can rewrite the likelihood ratio itself as

max Ly(6)
A=
Ly(Omie)

e Additionally, I've tried to match the definition of the LRT posited in
the textbook - note that it applies to a general null hypothesis
Ho : 6 € Qo. Recall that in this class (PSTAT 120B), we almost always
take Q = {6,} for some prespecified 6,, which allows us to further
simplify the likelihood ratio (as the next example demonstrates).
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Example

Example

Let i, -, Y, & Exp(6). Construct the likelihood ratio test for Ho : 6 = 6,
Vs Hy : 0 # 0o, using an « level of significance. You do not need to
explicitly solve for constants; just derive the general form for the LRT.
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Relationship between Hypothesis Testing and
Confidence Intervals
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Z—Test

e Let's, for the moment, return to a two-sided Z—Test.

e Thatis, take Y,,--- ., Y, - (11, 02) for known o2, and consider testing

Ho : 1t = pio VS Ha @ 11 # o
* We previously saw that a test with significance level a rejects H, in
favor of Hy whenever
> o7 (1 - 9)
2

7n — Mo

o/y/n
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Z—Test
e Equivalently, we fail to reject the null if
Vn — Mo

o/vn <o <1 B %)

e With a bit of algebra, we can see this is equivalent to failing to reject
H, in favor of H, when

Vom0 (1-2) Z<po Vot o (1-3) =

* Do the endpoints of this interval look familiar?
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Relationship between Hypothesis
Testing and Confidence Intervals

Theorem (Hypothesis Testing and Cls)

Consider the setting of a two-sided Z— or T—test. An equivalent
formulation for the test at an o level of significance is to con-
struct a (1 — a) x 100% confidence interval for 1, and reject H, if
o does not fall inside this CI.
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Accepting vs. Failing to Reject

e As your textbook argues, this paradigm allows us to see why it pays to
be careful with our language and say “fail to reject H," instead of
“accept Hy."

* Note that any value inside the confidence interval is an “acceptable”
value for . at a significance level «. There isn't a single acceptable
value, but an infinite number!

* So, even if y, falls within our Cl, we cannot simply say that we
“accept” the null - all we can say is that there isn't enough evidence
to reject it (i.e. we “fail to reject”).

Topic 6 | Ethan P. Marzban  PSTAT 120B, Sum. Sess. A, 2024 UCSANTABARBARA
Department of Statistics

Page 22/25 and Applied Probability



Some Final Comments

* | highly encourage you to read Section 10.7 of the textbook, which is a
two-page set of assorted comments on hypothesis testing.

e Hopefully I've convinced you that hypothesis testing is incredibly
useful - indeed, you’ll be using hypothesis tests a lot going forward!

e Section 10.7 contains some really nice thoughts and bits of guidance
(e.g. what do we do if our null is of the form Hy : 6 < 6,?)
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 I'd also like to make a few comments of my own about hypothesis
testing before closing out this lecture.

e Firstly, there are still some questions we didn’t fully answer.

e For example, suppose | want to test the hypothesis that the average
pollution levels in Seattle are the same as those in San Francisco.

* This is a hypothesis test, but one that asks us to compare two
different populations.

* Indeed, there is a way to formulate tests for hypotheses like these -
check out section 10.8 for a treatment of that.
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e There also exists a very famous test for comparing two population
variances (e.g. is the variance among all cat weights the same as the
variance among all dog weights?)

e This is called an F—test, which makes use of something called the
F—distribution (you'll talk extensively about this in PSTAT 122).

e Check out section 10.9 of the textbook for a treatment of testing
variances.

e There are also some very nice large-sample properties of the
Likelihood Ratio Test, which is one of the reasons it remains a very

popular method for constructing tests. Take a look at Section 10.11 for
more information.
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