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Power of a Test
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Power

• Recall that α (the significance level) denotes the probability of
committing a Type I error, and β denotes the probability of comitting
a Type II error.

• We can analogously define a quantity that represents the probability
that a given test will lead to rejection of the null:
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Power

Definition (Power)

Suppose that W is the test statistic and R is the rejection region
for a test of a hypothesis involving the value of a parameter θ.
Then the power of the test, denoted by power(θ), is the proba-
bility that the test will lead to rejection of H0 when the actual
parameter value is θ. That is,

power(θ) = P(W ∈ R when the parameter value is θ)
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Power

Theorem (Relationship between Power and β)

If θA is a value of θ in the alternative hypothesis HA, then

power(θA) = 1 − β(θA)

where β(θA) denotes the probability of committing a Type II error
when the true value of θ is θA.
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Power

• As the notation suggests, we typically view power as a function of the
true value of θA.

• Plotting the power of a given test at a series of specified values in the
alternative space yields a so-called power curve.

• Let’s think through what the “ideal” power curve looks like.
• What would we like power(θ0) to be?
• Well, since power(θA) is, by definition and for any point θA, the

probability of rejecting H0 : θ = θ0 when the true value of θ is θA, we’d
like power(θ0) = 0.
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Power

• Similarly, for any θA ̸= θ0, we’d like power(θA) = 1.
• So, the ideal power curve for a test would look like

θA

power(θA)

1

θ0
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Power
• Now, keep in mind that all tests are performed at a fixed α level of

significance.
• As we discussed before, it’s impossible to simultaneously minimize α

and β - hence, it’s impossible to get a power of exactly zero.
• A more realistic power curve for a test of H0 : θ = θ0 vs HA : θ ̸= θ0

might look like

θA

power(θA)

1

θ0
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Example
Example
Let Y1, · · · , Yn

i.i.d.∼ N (µ, 1) for some unknown µ ∈ R, and suppose we wish
to conduct a test of H0 : µ = µ0 vs HA : µ > µ0 at an α = 0.05 level of
significance. We propose two tests:

Test 1: Reject H0 when Y1 − µ0 > Φ−1(0.975)

Test 2: Reject H0 when Yn − µ0

1/
√
n

> Φ−1(0.975)

Derive expressions for the power functions for these two tests, and use
this to determine if one test outperforms the other in terms of power for
all values of θ in the alternative.
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Power
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Power
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Power

• Since we want the power of our test to be 1 nearly everywhere, we
often seek uniformly most powerful tests.

• In general, finding such tests is very challenging (and, indeed, such
tests don’t always exist).

• However, if we restrict ourselves to a simple-vs-simple test, we
actually can construct a most powerful test at a level α, using what is
known as the Neyman-Pearson Lemma.
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Neyman-Pearson Lemma

• Since we want the power of our test to be 1 nearly everywhere, we
often seek uniformly most powerful tests.

• In general, finding such tests is very challenging (and, indeed, such
tests don’t always exist).

• However, if we restrict ourselves to a simple-vs-simple test, we
actually can construct a most powerful test at a level α, using what is
known as the Neyman-Pearson Lemma.
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Neyman-Pearson Lemma
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Neyman-Pearson Lemma

• So, in the simple-vs-simple case (i.e. H0 : θ = θ0 vs HA : θ = θA for
some θA ̸= θ0), we not only have the existence of a most powerful
test, but we have its form!

• Indeed, the particular test described in the Neyman-Pearson Lemma
is a special case of a broader class of tests, known as
Likelihood Ratio Tests (LRTs).
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Likelihood Ratio Test

Definition (Likelihood Ratio Test)

Consider hypotheses H0 : θ ∈ Ω0 and HA : θ ∈ ΩA. Define

Λ :=
L(Ω̂0)

L(Ω̂)
=

max
θ∈Ω0

LY⃗(θ)

max
θ∈Ω0∪ΩA

LY⃗(θ)

A likelihood ratio test (named as such because we call Λ a
likelihood ratio) rejects H0 whenever {Λ < k}.
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Likelihood Ratio Test
• Note that the denominator is the maximum value of the likelihood,

over the entire parameter space.
• As such, in many cases we can rewrite the likelihood ratio itself as

Λ :=
max
θ∈Ω0

LY⃗(θ)

LY⃗(θ̂MLE)

• Additionally, I’ve tried to match the definition of the LRT posited in
the textbook - note that it applies to a general null hypothesis
H0 : θ ∈ Ω0. Recall that in this class (PSTAT 120B), we almost always
take Ω = {θ0} for some prespecified θ0, which allows us to further
simplify the likelihood ratio (as the next example demonstrates).
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Example

Example
Let Y1, · · · , Yn

i.i.d.∼ Exp(θ). Construct the likelihood ratio test for H0 : θ = θ0
vs HA : θ ̸= θ0, using an α level of significance. You do not need to
explicitly solve for constants; just derive the general form for the LRT.
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Relationship between Hypothesis Testing and
Confidence Intervals
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Z−Test

• Let’s, for the moment, return to a two-sided Z−Test.
• That is, take Y1, · · · , Yn

i.i.d.∼ N (µ, σ2) for known σ2, and consider testing
H0 : µ = µ0 vs HA : µ ̸= µ0.

• We previously saw that a test with significance level α rejects H0 in
favor of HA whenever ∣∣∣∣Yn − µ0

σ/
√
n

∣∣∣∣ > Φ−1
(

1 − α

2

)
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Z−Test

• Equivalently, we fail to reject the null if∣∣∣∣Yn − µ0

σ/
√
n

∣∣∣∣ ≤ Φ−1
(

1 − α

2

)
• With a bit of algebra, we can see this is equivalent to failing to reject
H0 in favor of HA when

Yn − Φ−1
(

1 − α

2

)
· σ√

n
≤ µ0 ≤ Yn + Φ−1

(
1 − α

2

)
· σ√

n

• Do the endpoints of this interval look familiar?
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Relationship between Hypothesis
Testing and Confidence Intervals

Theorem (Hypothesis Testing and CIs)

Consider the setting of a two-sided Z− or T−test. An equivalent
formulation for the test at an α level of significance is to con-
struct a (1 − α)× 100% confidence interval for µ, and reject H0 if
µ0 does not fall inside this CI.
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Accepting vs. Failing to Reject

• As your textbook argues, this paradigm allows us to see why it pays to
be careful with our language and say “fail to reject H0” instead of
“accept H0.”

• Note that any value inside the confidence interval is an “acceptable”
value for µ at a significance level α. There isn’t a single acceptable
value, but an infinite number!

• So, even if µ0 falls within our CI, we cannot simply say that we
“accept” the null - all we can say is that there isn’t enough evidence
to reject it (i.e. we “fail to reject”).
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Some Final Comments

• I highly encourage you to read Section 10.7 of the textbook, which is a
two-page set of assorted comments on hypothesis testing.

• Hopefully I’ve convinced you that hypothesis testing is incredibly
useful - indeed, you’ll be using hypothesis tests a lot going forward!

• Section 10.7 contains some really nice thoughts and bits of guidance
(e.g. what do we do if our null is of the form H0 : θ ≤ θ0?)
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Some Final Comments

• I’d also like to make a few comments of my own about hypothesis
testing before closing out this lecture.

• Firstly, there are still some questions we didn’t fully answer.
• For example, suppose I want to test the hypothesis that the average

pollution levels in Seattle are the same as those in San Francisco.
• This is a hypothesis test, but one that asks us to compare two

different populations.
• Indeed, there is a way to formulate tests for hypotheses like these -

check out section 10.8 for a treatment of that.
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Some Final Comments
• There also exists a very famous test for comparing two population

variances (e.g. is the variance among all cat weights the same as the
variance among all dog weights?)

• This is called an F−test, which makes use of something called the
F−distribution (you’ll talk extensively about this in PSTAT 122).

• Check out section 10.9 of the textbook for a treatment of testing
variances.

• There are also some very nice large-sample properties of the
Likelihood Ratio Test, which is one of the reasons it remains a very
popular method for constructing tests. Take a look at Section 10.11 for
more information.
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