
QUICK REVIEW OF PSTAT 120A

PSTAT 120B:Mathematical Statistics, I

Summer Session A, 2024with Instructor: Ethan P. Marzban

DISCLAIMER: This is not meant to be a comprehensive treatment of PSTAT 120A material! Rather, I hope

you can use this as a starting point, and can subsequently refer to your own notes from PSTAT 120A.
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1 Fundamentals of Probability

Recall that an experiment, simply put, is any procedure we can repeat an infinite number of times, where

each time we repeat the procedure the same fixed set of “things” (called outcomes) can occur. The set of

all outcomes of an experiment is called the outcome space, and is denotedΩ.

We can define an event to be a subet ofΩ; in other words, events are just sets comprised of outcomes. The

event space, denotedF , is the set of all outcomes associatedwith an experiment. As such, mathematically,

F is simply a collection of subsets ofΩ.

Example 1

Consider the experiment of tossing a coin twice and recording the outcomes.

Letting (X,Y ) denote “the first toss landed X and the second toss landed Y ” and H denote

“heads” and T denote tails, we can express the outcome space of this experiment as

Ω = {(H,H) , (H,T ) , (T,H) , (T, T )} =: {H,T}2

The eventE1 := “we observe at least one head” can be expressed mathematically as

E1 = {(H,H) , (H,T ) , (T,H)} ⊆ Ω

Wemay take the event space of this experiment to be the power set ofΩ: F = 2Ω
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Now, notice how we use the word “probability” in our everyday speech: “the probability of winning the

lottery is one in a million”, or “the chance of rain tomorrow is 25%”, etc. We can see that, in a sense, “prob-

ability” is a function that acts on events. Indeed, we can make this more formal:

Definition (Probability Measure)

Given an outcome space Ω and an event space F , a function P : F → R is said to be a proba-

bility measure if it satisfies the following three properties (which are collectively often referred

to as the Axioms of Probability):

(1) Nonnegativity: (∀E ∈ F)[P(E) ≥ 0]

(2) Probability of the Outcome Space is Unity: P(Ω) = 1

(3) Countable Additivity: for {Ei}∞i=1 ⊆ ΩwithEi ∩Ej = ∅ for every i 6= j (collections of
events satisfying this condition are said to be parwise disjoint),

P

( ∞⋃
i=1

Ei

)
=

∞∑
i=1

P(Ei)

The quantity (Ω,F ,P) - i.e. a collection of an outcome space, event space, and probability measure - is

called a probability space.

From the Axioms of Probability (AP), we can derive several useful and important results. As an exercise, I

encourage you to prove these on your own.

Theorem (Probability Rules)

Given a probability space (Ω,F ,P), we have the following:

• Complement Rule: (∀E ∈ F)[P(E{) = 1− P(E)]

• Set Difference Rule: (∀E,F ∈ F)[P(E \ F ) = P(E)− P(E ∩ F )

• Addition Rule: (∀E,F ∈ F)[P(E ∪ F ) = P(E) + P(F )− P(E ∩ F )

• Inclusion-Exclusion Rule: for a collection of events {Ei}ni=1 ⊆ Ω,

P

(
n⋃

i=1

Ei

)
=

n∑
i=1

P(Ei)−
∑
i<j

P(Ei ∩ Ej) +
∑

i<j<k

P(Ei ∩ Ej ∩ Ek)

+ · · ·+ (−1)n−1
∑

i<···<n

P

(
n⋂

i=1

Ei

)

Example 2

A cinema recently conducted a survey and found that 80% of moviegoers purchase popcorn,

60% purchase a drink, and 50% purchase both popcorn and a drink (or both).

DefiningP := “randomly selectedmoviegoerpurchasespopcorn” andD := “randomly selected
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moviegoer purchases a drink”, the problem tells us that

P(P ) = 0.8; P(D) = 0.6; P(P ∩D) = 0.5

With this, we can compute the probability that a randomly-selectedmoviegoer purchases either

popcorn or a drink (or both) to be

P(P ∪D) = P(P ) + P(D)− P(P ∩D) = 0.8 + 0.6− 0.5 = 0.9 = 90%

Similarly, the probability that a randomly-selected moviegoer purchases only popcorn (and not

a drink) is

P(P \D) = P(P )− P(P ∩D) = 0.8 = 0.5 = 0.3 = 30%

2 Conditional Probability and Independence

Often times, information about one event will influence our beliefs about another. For example, in the

absence of any information, we might say “the chance of rain tomorrow is 50%.” However, the knowledge

that we are in Santa Barbara in the summer would likely decrease what we believe the true probability of

rain tomorrow is.

This is precisely where conditional probabilities are useful - they give us a way to express an “updating of

beliefs.”

Definition (Conditional Probability Measure)

Given a probability space (Ω,F ,P) and eventsE,F ∈ F withP(F ) > 0, we define the condi-
tional probability ofE given F to be

PF (E) := P(E | F ) :=
P(E ∩ F )

P(F )

A couple of notes:

• The notationP(E | F ) is more common, thoughPF (E) is still used fairly often.

• Note, crucially, that P(E | F ) exists only when P(F ) > 0. If P(F ) = 0, then P(E | F ) is simply

undefined.

• PF (E) is actually a valid probability measure; I encourage you to prove this as an exercise (all you

need to do is show that all three of the Axioms of Probability are satisfied).

• One interpretation of the quantityP(E | F ) is as our beliefs about the eventE, updated to reflect

the fact thatF has occurred. In thisway, conditional probabilities are “if-then” statements: P(E | F )
answers the question “if F , what is the probability ofE?”

Definition (Partition)

Given a probability space (Ω,F ,P), an eventF ∈ F , and a collection of events {Ei}ni=1, we say

that the collection {Ei}ni=1 partitions (or forms a partition of) F if:
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(1) the sequence is pairwise disjoint (i.e. Ei ∩ Ej = ∅ for every i 6= j)

(2)
⋃n

i=1Ei = F

Theorem (Law of Total Probability)

Given a probability space (Ω,F ,P), an event F ∈ F , and a partition {Ei}∞i=1 ofΩ,

P(F ) =
∞∑
i=1

P(F | Ei) · P(Ei)

The Law of Total Probability (LoTP) is particularly useful in that it allows us to decompose an unconditional

probability into a sum of terms involving conditional probabilities.

Theorem (Bayes’ Rule)

Given a probability space (Ω,F ,P) and eventsE,F ∈ F withP(E) 6= 0 andP(F ) 6= 0,

P(E | F ) =
P(F | E) · P(E)

P(F )

Bayes’ rule effectively allows us to “reverse the order of a conditional probability.” It is common to use the

LoTP to compute the denominator of Bayes’ Rule.

Example 3

Suppose 5% of a particular population has been infected with a disease. There exists a test for

this disease, but it is not perfect: in 10% of cases the test incorrectly reports a healthy person

as having the disease, and in 7% of cases the test incorrectly reports a diseased person as being

healthy.

LetD := {a randomly-selected person has the disease} and T+ := {a randomly-selected person

tests positive}. Then, from the problem statement,

P(D) = 0.05; P(T+ | D{) = 0.1; P(T {
+ | D) = 0.07

The complement rule allows us to compute

P(D{) = 0.95; P(T {
+ | D{) = 0.9; P(T+ | D) = 0.93

By the Law of Total Probability, the probability that a randomly-selected person tests positive

is

P(T+) = P(T+ | D) · P(D) + P(T+ | D{) · P(D{)

= (0.93) · (0.05) + (0.1) · (0.95) = 0.1415

Thus, by Bayes’ Rule, the probability that a randomly-selected person has the disease given that

they have tested positive is

P(D | T+) =
P(T+ | D) · P(D)

P(T+)
=

(0.93) · (0.05)
0.1415

≈ 0.3286 = 32.86%
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Definition (Independence)

Given a probability space (Ω,P,F), events E,F ∈ F are said to be independent, notated

E ⊥ F , if any of the following (equivalent) statements hold:

1. P(E | F ) = P(E)

2. P(F | E) = P(F )

3. P(E ∩ F ) = P(E) · P(F )

Here’s one way to interpret this definition: take a look at condition (1): P(E | F ). In a sense, P(E | F )
represents our beliefs about the eventE in the presence of knowledge thatF has occurred. The statement

P(E | F ) = P(E) is then asserting that our beliefs about the eventE in the presence of knowledge that

F has occurred have remain unchanged fromour beliefs aboutE without any information onF . In this way,

we are asserting that the eventsE and F “don’t affect each other-” i.e. that they are “independent”.

Example 2 (cont’d)

Consider the following situation again: A cinema recently conducted a survey and found that

80% of moviegoers purchase popcorn, 60% purchase a drink, and 50% purchase both popcorn

and a drink (or both).

Note that

P(P ) · P(D) = (0.8) · (0.6) = 0.48 6= 0.5 = P(P ∩D)

Hence, the eventsP andD are not independent: customers do not appear to purchase popcorn

and drinks independently.

Independence of more than two events is a bit more complicated:

Definition (Mutual Independence)

Given a probability space (Ω,F ,P), a sequence {Ei}ni=1 are said to bemutually independent

if for every subsequence {Ei1 , · · · , Eik} ⊆ {Ei}ni=1, with 2 ≤ k ≤ n and 1 ≤ i1 < i2 < · · · <
ik ≤ n, it holds that

P

 k⋂
j=1

Eij

 =
k∏

i=1

P(Eij )

For example, to establish the independence of 4 events A,B,C,D, we would need to verify all of the

following:

• P(A ∩B) = P(A) · P(B)

• P(A ∩ C) = P(A) · P(C)

• P(A ∩D) = P(A) · P(D)

• P(B ∩ C) = P(B) · P(C)

• P(B ∩D) = P(B) · P(D)
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• P(C ∩D) = P(C) · P(D)

• P(A ∩B ∩ C) = P(A) · P(B) · P(C)

• P(A ∩B ∩D) = P(A) · P(B) · P(D)

• P(A ∩ C ∩D) = P(A) · P(C) · P(D)

• P(B ∩ C ∩D) = P(B) · P(C) · P(D)

• P(A ∩B ∩ C ∩D) = P(A) · P(B) · P(C) · P(D)

One can show that, to prove the independence of n events, we must check 2n − n− 1 conditions.

3 Random Variables

We define a random variableX to be a function that maps from Ω to R. The support or state space of a

random variableX , notated SX , is defined to beX(Ω).

Example 4

Consider the experiment of tossing two fair coins, and recording the number of heads observed.

LetX denote the number of heads observed.

We have previously seen that one way to express the outcome space of this experiment is

Ω = {H,T}2 = {(H,H) , (H,T ) , (T,H) , (T, T )}

SinceX counts the number of heads, we see that

X((H,H)) = 2; X((H,T )) = 1; X((T,H)) = 1; X((T, T )) = 0

Hence, SX = {0, 1, 2}.

Randomvariables are classified by their support. IfSX is atmost countable (i.e. finite or countably infinite),

thenX is said to be a discrete random variable. If SX is uncountable,X is said to be a continuous random

variable. It is possible for a random variable to be neither discrete nor continuous; such distributions are

often called mixed random variables.

Example 4 (cont’d)

Since SX = {0, 1, 2} is a finite set, the random variableX is discrete.

Discrete random variables are characterized by a probability mass function (PMF, or just “mass function”

for short), defined as pX(x) := P(X = x). Indeed, a valid PMF must crucially satisfy two properties:

(1) Nonnegativity: (∀x ∈ R)[0 ≤ pX(x) ≤ 1]

(2) Summing to Unity:
∑

all x pX(x) = 1
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Example 4 (cont’d)

pX(2) := P(X = 2) = P({(H,H)}) = 1

4

pX(1) := P(X = 2) = P({(H,T ) ∪ (T,H)}) = 1

2

pX(0) := P(X = 2) = P({(T, T )}) = 1

4

Therefore, we can summarize the PMF ofX as

pX(x) =


1/4 if x = 0

1/2 if x = 1

1/4 if x = 2

0 otherwise

or tabularly as

x 0 1 2

P(X = x) 1/4 1/2 1/4

Note

The notation {X = x} is really a shorthand:

{X = x} := {ω ∈ Ω : X(ω) = x}

Similarly,

{X ∈ B} := {ω ∈ Ω : X(ω) ∈ B}

For example,

{X ≤ x} := {ω ∈ Ω : X(ω) ≤ x}

Given a PMF, several quantities can be computed:

(1) Expectation: E[X] :=
∑

x x · pX(x)

(2) Law of the Unconscious Statistician (LOTUS):E[g(X)] =
∑

x g(x)pX(x)

(3) nth moment: µ
(X)
n := E[Xn]

(4) Variance: Var(X) := E
{
(X − E[X])2

}
= E[X2]− (E[X])2

(5) Cumulative Mass Function (CMF): F (x) := P(X ≤ x)

Continuous random variables are characterized by a probability density function (PDF, or just “density func-

tion” for short), which is a function fX : R→ R satisfying

(1) Nonnegativity: (∀x ∈ R)[0 ≤ fX(x) ≤ 1]

(2) Integrating to Unity:
ş

R
fX(x) dx = 1
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Given a PDF, several quantities can be computed:

(1) Expectation: E[X] :=
ş

R
xfX(x) dx

(2) Law of the Unconscious Statistician (LOTUS):E[g(X)] =
ş

R
g(x) · fX(x) dx

(3) nth moment: µ
(X)
n := E[Xn]

(4) Variance: Var(X) := E
{
(X − E[X])2

}
= E[X2]− (E[X])2

(5) Cumulative Distribution Function (CMF): F (x) := P(X ≤ x)

Additionally, we define the survival function of a random variableX asFX(x) := P(X > x) = 1−FX(x).

Definition (Indicator Random Variable)

Given a probability space (Ω,F ,P) and an event E ∈ F , we define the indicator random vari-

able of the eventE (often referred to simply as the “indicator”) to be

1E(ω) =

{
1 if ω ∈ E

0 if ω ∈ E{

Notationally, it is common to drop the ω and write

1E :=

{
1 ifE

0 ifE{

Indicators have a few important and useful properties:

• E[1E ] = P(E)

• Var(1E) = P(E) · P(E{)

• 1E · 1F = 1E∩F

Example 5

Consider a random variableX with density given by

fX(x) =
1

θ
· e−x/θ · 1{x≥0}

where θ > 0 is a deterministic (i.e. non-random) constant.

First note that the indicator tells us that fX(x) > 0 only when x ≥ 0; in other words, the

support ofX is SX = [0,∞).

This is a valid density function because:

(1) Nonnegativity: Wheneverx < 0wehave fX(x) = 0. Wheneverx ≥ 0weknow e−x/θ >
0, and since θ > 0we have fX(x) > 0. Thus, for any x ∈ R, we have fX(x) ≥ 0.
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(2) Integrating to Unity:

ż ∞

−∞
fX(x) dx =

ż ∞

−∞

1

θ
· e−x/θ · 1{x≥0} dx

=

ż ∞

0

1

θ
e−x/θ dx =

1

θ
· θ · e−x/θ

]x=0

x=∞
= 1X

4 Distributions

Certain mass/density functions arise so often that it becomes useful to give them a name. We can essen-

tially think of a distribution as a “package,” giving us information about a PMF/PDF, CMF/CDF, support,

expectation, etc. (We’ll actually discuss the notion of distributions a bit further during the first few lec-

tures of PSTAT 120B.)

For example, the density in Example 4 above is the density of the Exponential Distribution, which admits a

single parameter θ. In general, we can consider parameters to be deterministic (i.e. nonrandom) constants

that affect the shape/behavior of the mass/density function.

Often times, I find it useful to consider a “story” behind each distribution. That is, I encourage you to think

of some typical examples that lead naturally to the different distributions - this will help you identify what

distribution a particular random variable follows.

4.1 Important Discrete Distributions

Bernoulli Distribution: X ∼ Bern(p), where 0 < p < 1

• Support: SX = {0, 1}

• PMF: pX(x) = px(1− p)1−x

• Expectation/Variance: E[X] = p; Var(X) = p(1− p)

• Story: result of a single coin flip.

Binomial Distribution: X ∼ Bin(n, p), where n ∈ N and 0 < p < 1.

• Support: SX = {0, 1, · · · , n}

• PMF: pX(x) =
(
n
x

)
px(1− p)n−x

• Expectation/Variance: E[X] = np; Var(X) = np(1− p)

• Story: number of heads in n tosses of a p−coin [i.e. a coin that lands heads with probability p]
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Geometric Distribution on {0, 1, · · · }: X ∼ Geom(p) on {0, 1, · · · }, where 0 < p < 1.

• Support: SX = {0, 1, · · · }

• PMF: pX(x) = (1− p)xp

• Expectation/Variance: E[X] = 1−p
p ; Var(X) = 1−p

p2

• Story: number of failures before the first success, where there is a p probability of success on any

given trial.

Geometric Distribution on {1, 2, · · · }: X ∼ Geom(p) on {1, 2, · · · }, where 0 < p < 1.

• Support: SX = {1, 2, · · · }

• PMF: pX(x) = (1− p)x−1p

• Expectation/Variance: E[X] = 1
p ; Var(X) = 1−p

p2

• Story: number of total trials before the first success, where there is a p probability of success on any
given trial.

Negative Binomial Distribution on {0, 1, · · · }: X ∼ NegBin(r, p) on {0, 1, · · · }, where r ∈ N and 0 < p <
1.

• Support: SX = {0, 1, · · · }

• PMF: pX(x) =
(
x+r−1

x

)
(1− p)xpr

• Expectation/Variance: E[X] = r(1−p)
p ; Var(X) = r(1−p)

p2

• Story: number of failures before the rth success, where there is a p probability of success on any

given trial.

Negative Binomial Distribution on {r, r + 1, · · · }: X ∼ NegBin(r, p) on {r, r + 1, · · · }, where r ∈ N and

0 < p < 1.

• Support: SX = {r, r + 1, · · · }

• PMF: pX(x) =
(
x−1
r−1

)
pr(1− p)x−r

• Expectation/Variance: E[X] = r
p ; Var(X) = r(1−p)

p2

• Story: number of total trials before the rth success, where there is a p probability of success on any

given trial.
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Poisson Distribution: X ∼ Pois(λ), where λ > 0

• Support: SX = {0, 1, · · · }

• PMF: pX(x) = e−λ · λx

x!

• Expectation/Variance: E[X] = λ; Var(X) = λ

• Story: number of arrivals in an interval of time.

Hypergeometric Distribution: X ∼ HyperGeom(N,G, n), were N ∈ {0, 1, · · · , }, G ∈ {0, 1, · · · , N},
and n ∈ {0, 1, · · · , N}

• Support: SX = {max{0 , n+G−N}, · · · ,min{n , G}}

• PMF: pX(x) =
(G
x
)(N−G

n−x
)

(N
n
)

• Expectation/Variance: E[X] = n · G
N ; Var(X) = n ·

(
G
N

)
·
(
1− G

N

)
· N−n
N−1

• Story: number of “good” elements in a sample of size n, drawn from a lot of N total elements of

whichG are “good”.

Discrete Uniform Distribution: X ∼ DiscUnif{x1, · · · , xn}

• Support: SX = {x1, · · · , xn}

• PMF: pX(x) = 1
n , where n = |{x1, · · · , xn}|

• Expectation/Variance: E[X] = xn := 1
n

∑n
i=1 xi; Var(X) = 1

n

∑n
i=1 x

2
i − (xn)

2

• Story: outcome of drawing a number at random from the set {x1, · · · , xn}.

4.2 Important Continuous Distributions

Uniform Distribution: X ∼ Unif[a, b], where−∞ < a < b < ∞.

• Support: SX = [a, b]

• PMF: fX(x) = 1
b−a · 1{x∈[a,b]}

• Expectation/Variance: E[X] = a+b
2 ; Var(X) = (b−a)2

12

Exponential Distribution: X ∼ Exp(θ), θ > 0

• Support: SX = [0,∞)

• PMF: fX(x) = 1
θe

−x/θ · 1{x≥0}

• Expectation/Variance: E[X] = θ; Var(X) = θ2
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Note: the parameterization of the exponential distribution listed above is a little different than the one

typically used in PSTAT120A. Please be aware that this newparameterization is the onewewill use in PSTAT

120B.

Normal Distribution: X ∼ N (µ, σ2)

• Support: SX = R

• PMF: fX(x) = 1√
2πσ2

· exp
{
− 1

2σ2 (x− µ)2
}

• Expectation/Variance: E[X] = µ; Var(X) = σ2

Definition (Standard Normal CDF)

IfX ∼ N (0, 1) [which is called the standard normal distribution], its CDF is defined to be the

functionΦ(·). In other words:

Φ(x) :=

ż z

−∞

1√
2π

e−z2/2 dz

Theorem (Standardization of Normal Distributions)

GivenX ∼ N (µ, σ2), then

Z :=

(
X − µ

σ

)
∼ N (0, 1)

We’ll actually revisit this result partway through PSTAT 120B.

4.3 Generating Functions

It turns out that there is another class of functions (aside from PMFs/PDFs and CMFs/CDFs) that can be

used to describe distributions - these are called generating functions. In PSTAT 120A, you were (hopefully)

introduced to the moment-generating function (MGF), defined as

MX(t) := E[etX ]

Note thatMGFs are computed as sums ifX is discrete and integrals ifX is continuous. (Wewon’t talk about

MGFs of mixed distributions in this class.)

MGFs are named the way they are because of the following useful property:

Theorem

Given a random variableX with MGFMX(t) that is finite in an interval around the origin, we

have

M
(n)
X (0) = E[Xn]

That is, the nth moment of X can be computed by taking the nth derivative of the MGF and

evaluating the result at 0.
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Distribution MX(t)

Binomial MX(t) = (1− p+ pet)n

Geometric on {0, 1, · · · } MX(t) =

{
p

1−(1−p)et if t < − ln(1− p)

∞ otherwise

Geometric on {1, 2, · · · } MX(t) =

{
pet

1−(1−p)et if t < − ln(1− p)

∞ otherwise

Negative Binomial on {0, 1, · · · } MX(t) =

{(
p

1−(1−p)et

)r
if t < − ln(1− p)

∞ otherwise

Negative Binomial on {1, 2, · · · } MX(t) =

{(
pet

1−(1−p)et

)r
if t < − ln(1− p)

∞ otherwise

Poisson MX(t) = eλ(e
t−1)

Uniform MX(t) =

{
etb−eta

t(b−a) if t 6= 0

1 if t = 0

Exponential MX(t) =

{
(1− θt)−1 if t < 1/θ

1 if t = 0

Normal MX(t) = exp

{
µt+ σ2

2 t2
}

MGFs are not the only type of generating function. Another very popular generating function is the so-

called probability generating function (PGF), defined as

GX(z) := E[zX ]

PGFs are not typically discussed in PSTAT 120A (or PSTAT 120B), but they arise very frequently in PSTAT

160A.

5 Random Vectors

It’s often desirable to consider collections of random variables. This is typical of a situation in which out-

comes are n-tuples of numbers. In such a situation, we define a random vector to be

~X :=

X1
...

Xn

 : Ω → Rn

Continuous Random Vectors are described by a joint density function fX1,··· ,Xn(x1, · · · , xn), sometimes

abbreviated f ~X
(~x), that satisfies:

(1) Nonnegativity: (∀~x ∈ Rn)[0 ≤ f ~X
(~x) ≤ 1]

(2) Integrating to Unity:
ş

Rn f ~X
(~x) d~x = 1
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Note that
ş

Rn f ~X
(~x) d~x is a shorthand notation for an n-dimensional integral:

ż

Rn

f ~X
(~x) d~x :=

ż ∞

−∞

ż ∞

−∞
· · ·

ż ∞

−∞
fX1,X2,··· ,Xn(x1, x2, · · · , xn) dx1 dx2 · · · dxn

The multivariate LOTUS (Law of the Unconscious Statistician) becomes

E[g( ~X)] =

ż

Rn

g(~x) · f ~X
(~x) d~x

For example, given a bivariate random vector (X,Y )with joint density fX,Y (x, y), we can compute

E[cos(X2 − 2X
√
Y )] =

żż

R2

cos(x2 − 2x
√
y)fX,Y (x, y) dA

Note

In this class, we’ll often use notation like (X,Y ) ∼ fX,Y to be a shorthand for “the bivariate

random vector (X,Y ) has joint density fX,Y (·, ·).”

Definition (Independent Random Variables)

RandomvariablesX1, · · · , Xn are said to be independent if their joint density factors as a prod-

uct of their marginals:

f ~X
(~x) =

n∏
i=1

fXi(xi)

For example, given (X,Y ) ∼ fX,Y , we can conclude X ⊥ Y if and only if fX,Y (x, y) = fX(x) · fY (y).
An interesting consequence of this is that if the joint support of (X,Y ) is nonrectangular, then we can

automatically conclude X ⊥ Y . The converse is not necessarily true - just because the joint support is

rectangular, we cannot automatically conclude thatX ⊥ Y .

Probabilities are computed as integrals of the joint:

P( ~X ∈ A) =

ż

A
f ~X

(~x) d~x

Recall fromPSTAT120A that, when computingprobabilities in themultivariate setting, sketching the region

of integration is absolutely crucial.

Example 5

Let (X,Y ) ∼ fX,Y where

fX,Y (x, y) = 8xy · 1{0≤y<x≤1}

Here, the joint support is the set

S(X,Y ) := {(x, y) ∈ R2 : 0 ≤ y < x ≤ 1}

which, when sketched, looks like:
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x

y

1

1

y = x

Suppose we want to computeP(X + Y < 1). We can accomplish this by computing

żż

R
fX,Y (x, y) dA

whereR is the region

R := {(x, y) ∈ R2 : x+ y < 1} ∩ SX,Y

which, when sketched, looks like

x

y

1

1

y = x

x+ y = 1

Notice that if we integrated in the order dy dxwe would have to split our integral into two.

This is not the case if we use the order dx dy; as such, let’s use this order of integration:

P(X + Y < 1) =

żż

R
fX,Y (x, y) dA

=

ż 1/2

0

ż 1−y

y
8xy dx dy

= 4

ż 1/2

0
y[(1− y)2 − y2] dy

= 4

ż 1/2

0
(y − 2y2) dy = 4

(
1

2
· 1
4
− 2

3
· 1
8

)
=

1

6

It’s sometimes desired to quantify how related two random variables are. This is where the notions of

covariance and correlation become useful.
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Definition (Covariance and Correlation)

Given two random variablesX and Y , we define their covariance to be

Cov(X,Y ) := E {(X − E[X]) · (Y − E[Y ])} = E[XY ]− E[X]E[Y ]

Because covariances are unbounded (i.e. range between−∞ and∞), we define the correlation

to be a standardized version of covariance:

Corr(X,Y ) :=
Cov(X,Y )

SD(X) · SD(Y )
∈ [−1, 1]

When |Corr(X,Y )| is close to 1 (i.e. when the correlation is close to −1 or 1), there is indication that the

two variables are strongly related. Note that ifX ⊥ Y , then Cov(X,Y ) = 0. The converse is not true: just
because Cov(X,Y ) = 0 doesn’t meanX ⊥ Y .

Theorem (Bilinearity of Covariance)

Given collections {Xi}ni=1 and {Yi}ni=1 of random variables and sequences {ai}ni=1 and {bi}ni=1

of constants,

Cov

 n∑
i=1

aiXi ,

n∑
j=1

bjYj

 =

n∑
i=1

n∑
j=1

aibjCov(Xi, Yj)

This property, coupled with the fact that Cov(X,X) = Var(X), allows us to derive the formula

Var

(
n∑

i=1

aiXi

)
=

n∑
i=1

a2iVar(Xi) + 2
∑
i<j

aiajCov(Xi, Xj)

As you can imagine,with randomvectors it canbecomeabit complicated toexpress dependency structures.

As such, it’s common to use variance-covariance matrices:

Var( ~X) =


Var(X1) Cov(X1, X2) · · · Cov(X1, Xn)

Cov(X1, X2) Var(X2) · · · Cov(X2, Xn)
...

...
. . .

...

Cov(X1, Xn) Cov(X2, Xn) · · · Var(Xn)

 =: Σ

Note that, since covariance is a symmetric operator [Cov(Xi, Xj) = Cov(Xj , Xi)], the matrixΣ will be a

symmetric matrix.

6 Inequalities

Sometimes we won’t have access to the full distribution of a random variable. In certain cases, we can still

provide bounds on various probabilities involving said random variable by invokingMarkov’s Inequality and

Chebyshev’s Inequality.
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Theorem (Markov’s Inequality)

Given a nonnegative random variableX [i.e. the support ofX contains only nonnegative val-

ues)] and a positive constant c > 0,

P(X ≥ c) ≤ E[X]

c

Theorem (Chebyshev’s Inequality)

Given a randomvariableX with finitemeanµ and finite varianceσ2, and for a positive constant

c > 0,

P(|X − µ| ≥ c) ≤ σ2

c2

Recall that, in certain cases, these inequalities can provide correct yet useless bounds. For instance, con-

sider a nonnegative random variableX with meanE[X] = 2. By Markov’s Inequality,

P(X ≥ 1) ≤ E[X]

1
= 2

However, this upper bound of 2 doesn’t provide any meaningful information as we knowP(X ≥ 1) ≤ 1.

Additionally, it’s important to consider the assumptions of these inequalities. For example, a random vari-

ableX with density

fX(x) =
2

x3
· 1{x≥1}

has finite expectation but infinite variance. Hence, we cannot apply Chebyshev’s Inequality to bound prob-

abilities involvingX (though, in practice, we wouldn’t ever really use Chebyshev’s Inequality since we have

access to the density and can therefore compute probabilities exactly).
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