SOME PSTAT 120A-STYLE REVIEW PROBLEMS

PSTAT 120B: Mathematical Statistics, |
Summer Session A, 2024 with Instructor: Ethan P. Marzban

1. Wait times (in minutes) at Cajé are uniformly distributed between 5 minutes and 15 minutes. Suppose
a customer is selected at random from Cajé, and their wait time is recorded.

€)

(b)

()

What is the probability that the selected customer waits fewer than 7 minutes?

Solution: Let X denote the wait time of the customer; then X ~ Unif[5, 15], meaning X has
density
1 1
fx(x) = -5 Liversis)y = 0 Livers sy
Therefore,

1
P(X <7) f fx(x dx—fdx—:5:20%

What is the expected amount of time this customer should expect to wait in line?

Solution: Recall that the expectation of the Unif|a, b] distribution is just (a + b)/2. Hence,
pluggingina = 5and b = 15 we find

5415

E[X] = =

= 10 mins

Given that the customer has already waited for 7 minutes but hasn’t been served yet, what is the
probability that they end up waiting for more than 10 minutes?

Solution: We seek P(X > 10 | X > 7). By the definition of conditional probability,

P(X >10, X >7)

P(X>10|X>7) = DX > 7)

Note that {X > 10} C {X > T7};thatis, if the customer has waited for more than 10 minutes
they most certainly have waited for more than 7 minutes. Hence,

P(X >10, X >7) = P(X > 10)

and so
15 1 5
P(X > 10 dz (& 5
P(X>10|X>7)= ( ) _ }glf —(180):—:62.5%
P(X>7)  (Pldr (f) 8

2. Luna the Golden Retriever has buried a bone somewhere in the backyard. Unfortunately, she can’t
quite remember where she buried it! As such, she keepds digging holes in the hopes of finding her
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bone - once she finds her bone, she stops digging holes. Suppose each hole Luna digs has a 25% chance
of containing her bone, independently of all other holes.

(@) IF X denotes the total number of holes Luna digs (including the final successful hole) before stop-
ping, what distribution does X follow? Include both a distribution name as well as any/all relevant
parameter(s).

Solution: Since X counts the total number of trials before the first success (where “success”
in this problem is digging a hole that contains the bone), we know X will follow a Geometric
distribution. Specifically, because X is counting the total number of trials we know that X will
gollow a Geometric distribution on {1, 2, - - - }. The parameter of the Geometric distribution
is the probability of success, which in this problem is stated to be p = 0.25. Hence,

X ~ Geom(0.25) on {1,2,---}

(b) What is the probability that Luna has to dig 20 or more holes before finding her bone?

Solution: By our work to part (a), we have that the PMF of X is given by

px(z) = (1 —0.25)*71(0.25) = (0.25) - (0.75)*~*

Hence,
> > e 025 & .
P(X >20)= Y px(z)= Y (0.25)-(0.75)" " = 0o > (0.75)
z=20 =20 ) =20
20
1 3 1 20 19
:7-(42 :7-37-4: <3> ~ 0.4228%
3(4) 3 4w 4

where we have utilized the formula for an infinite geometric series:

oo ’]”a
Zrk =1 provided |r| < 1
k=a -

(c) What is the probability that Luna has to dig 19 or fewer holes before finding her bone?

Solution: Note that since X only admits positive integers in its support,

% 19
P(X<19)=1-P(X >20)= 1— (4) ~ 99.5772%

3. Let X be arandom variable, and let a, b € R be deterministic constants. Use first principles to prove
that expectations are linear; that is, E[aX + b] = aE[X] + b. As a hint: consider the discrete and
continuous cases separately, and start each case by applying the LOTUS and leveraging linearity of
sums and expectations. (You may assume that X is not mixed.)
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Solution: First we consider the discrete case: let X have probability mass function (p.m.f.) given
by px (k), so that we have

ElaX +b] =) (ak +) - px (k)
k

=a <Zk -p;dk)) +b (Zp;dk)) =aE[X]+ D
k k

=E[X] =1

Similarly, if X is continuous with probability density function (p.d.f.) given by fx (x), then

o

E[aX + b] :J (ax +0b) - fx(z)dz

—0o0

—q <J°° 2 fx () d:n) +b U_O; Fx(2) dx) — aB[X] + b

— 00

=E[X] =1

4. The Celestial Toymaker' has decided to play a game with me. On a table, he lines up an infinite number
of boxes (he is the god of games, after all). With probability (1/2)i he selects box number ¢ [where
i =1,2,3,--- 1. Inside box number i there are 3? marbles, one of which is red and the remainder of
which are blue. So, for example, box 1 is selected with probability (1/2), and contains 1 red marble and
2 blue marbles; box 2 is selected with probability (1/4), and contains 1 red marble and 8 blue marbles,

etc. The Toymaker selects a box, and then draws a marble.
(@) What is the probability that the Toymaker selects a red marble?

Solution: Let B; denote the event that box i was chosen, and let R denote the event that a
red marble was chosen. From the problem statement, we have that

P(B;) = (Q>i; P(R|B) =

We seek IP(R); using the Law of Total Probability, we compute this as
P(R) = ZIP(R | B;) - P(B;)
i=1

) () -26)

1=
6
)

.

) 1.

—~ |
= =

—_
| =

1
6

"IF you're curious, this is a character from the British Sci-Fi teleision show Doctor Who.
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(b) Given that the Toymaker selected a red marble, what is the problem that he drew from box 4?

this as

IP(By)

1y (1
_ (34)(1)(24) _ 12596 ~ 3.856 x 10~2
5

Solution: Using our notation from part (a), we seek P(By | R). By Bayes’ Rule, we compute

5. Consider a sequence {X;}" ; of ii.d. random variables with common mean £ and common variance

o2. Define

1 n
:n;Xi

to be the sample mean. Compute Corr(Xl,Yn), the correlation between X; and the sample mean.

Hint: Bilinearity.

Solution: By the definition of correlation,

COV(Xl,Yn)

Con(x), ¥,) = o)

tor:

- 1 n n 1
Cov(X1, X,) = Cov <X1 = 2){) Z ECOV X1, X
1= =1

more, Cov(X1, X1) = Var(X1) = o2; hence,

Cov Xl, ZU ]l{z 1}—*

Therefore, putting everything together,

Cov(X1, X,) (%

(%)
SD(X1)SD(X,) (o) - (%)

Corr( X1, X,,) = @
n

S|

The denominator is relatively simple to compute: we know SD(X) = o, and from a previously-
derived result (from PSTAT 120A) we know SD(X,,) = o /+/n. As such, let's focus on the numera-

Since we are assuming the X;’s are i.i.d., we know that Cov(X7, X;) = 0 whenever ¢ # 1. Further-
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6. Let (X,Y) ~ fxy. Prove that
ELX) = || afir(eg)da
R2

Hint: Iterate the integral on the RHS, leverage the relationship between marginal densities and joint
densities, and finally recognize the definition of E[X].

Solution:

me wfxy(@,y)dd= J;R JR rfxy(z,y)dy dr
N fo (J}R fxx(@y) dy> dz = JR zfx(z)dz = E[X]

=fx(z)

7. Let (X,Y) ~ fx,y where
fxy(@,y) = k(1 —y) Lio<e<y<1y
(a) Find the value of k that ensures this is a valid joint density function.

Solution: Nonnegativity is fairly trivial; for every (z,y) € {(z,y) e R: 0 <z <y <1} we
know that y € [0,1] and so (1 — y) > 0. So, all we need for nonnegativity to hold is for k to
be positive.

To find the specific value of k, we recall that fx y (x,y) must integrate to unity. Therefore,
we start off by computing

ﬂ%(l —y)- Lio<a<y<1y dA

Let's sketch the support:

[ e -

This allows us to compute

ﬂRz k(1 =y) Ljococy<ty dA = Ll Ly(l —y) dz dy
! 1
_L y<1—y>dy—f (y—y*) dy =

0

N | =

Hence, in order for the density to integrate to unity, we should take k£ =6 .
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(b) Compute P(X <3/4, Y > 1/2).

Solution: We find the desired probability by computing

P(X <34,V > 1) = ﬂR 6(1 — y) dA

where

Sketching this region yields:

L S W

(somewhat arbitrarily) use the order dz dy:

3/a ry 3/4 1 9 1 1
6(1—y d:):dy:6f y — > dy:6|:(_>_
LQL =) LYY 2\16 1) 3

Ri={(z,y) eR*: 2 <31, y>1p,0<2x<y<1}

3/4 ry 1 r3/a
P(X§3/4,Y21/2)—£/ L6(1—y)da:dy—i—£/f0 6(1 —y)dzdy
2 4

Whichever order of integration we pick, we need to split the integral into two. As such, let’s

Lo 3t 9 1 1 9 9
6(1—y)dedy=6->-| (I—y)dy==--|--=(1-=)|=—
L/JO (1-y)dzdy 4L/4( y)dy =5 [4 2( G 1
11 9 31
<3 S1h) = - 4 2 — 22
PX =3 YV 212 =545~ @
8. Let X ~ Unif[a, b].
(@) Show that X has MGF given by
tb ta
e ey £
M t: t(b—(l)
x0 {1 ift =0

Be careful with the cases you consider!

Solution: We know that X has density given by
1
fx(@) = g Lizeam

a
Thus, by the definition of MGFs (coupled with the LOTUS),

Mx(t) == B[] = JOO e fx(x) dw

—0o0
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First note: if t = 0, we have

IFt £ 0, then

00 b tb ta
1 —
Mx (t) J e fx(x) dx f et~ dp=S—C

“ b—a t(b—a)
Hence, putting everything together,
tb ta
e =< ift#£0
M t — t(b*(l)
x (0 {1 ift =0

(b) Is the above MGF continuous at ¢t = 0? (Recall that this question is important as a lot of our MGF-
related results assume continuity in an interval containing ¢t = 0!)

Solution: The question really boils down to whether lim;—,o Mx(t) = 1 or not. First note
that plugging in ¢ = 0 to the formula

etb _ eta
t(b—a)
yields an indeterminate form of 0/0. As such, we should apply L'Hospital’s rule:

etb ta

_ d
im ——— = lim %

_ d
=0 t(b—a) =0 §

Hence, we have

et — eta] —im bett — qet®  h—aq
tb—a) 0 b—a

lim Mx(t) =1

meaning the MGF /s continuous at ¢t = 0.

Mx (1)

(c) Derive a simple closed-form expression for

|:6tb o 6ta:|
t=0 t

where the notation %]tzo means “the n™" derivative, evaluated at ¢t = 0.”

d
din

Solution: Though we could try and “brute-force” this by taking derivatives and hoping to see

a pattern, let’s see if we can be a bit more clever. Since we have established continuity of the
MGF at ¢t = 0, we can now invoke the fact that

M (0) = B[X"]
This means

4
din

=] -
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By the LOTUS, we can obtain another formula for E[X™]:

b n+1l _ n+l
]E[X"]:f x" ! dx = b a
e b—a (n+1)(b—a)
Therefore, we have
d etb _ eta bn+1 _ an+1
dtn|,_, [t(b—a)] T (n+1)(b—a)

Multiplying both sides by (b — a) yields

d

dtn |,

etb - eta - bn+1 _ an+1
o t - n+1
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