
SOME PSTAT 120A-STYLE REVIEW PROBLEMS

PSTAT 120B:Mathematical Statistics, I

Summer Session A, 2024with Instructor: Ethan P. Marzban

1. Wait times (in minutes) at Cajé are uniformly distributed between 5 minutes and 15 minutes. Suppose

a customer is selected at random from Cajé, and their wait time is recorded.

(a) What is the probability that the selected customer waits fewer than 7 minutes?

Solution: LetX denote the wait time of the customer; thenX ∼ Unif[5, 15], meaningX has

density

fX(x) =
1

15− 5
· 1{x∈[5,15]} =

1

10
· 1{x∈[5,15]}

Therefore,

P(X < 7) =

ż 7

−∞
fX(x) dx =

ż 7

5

1

10
dx =

2

10
=

1

5
= 20%

(b) What is the expected amount of time this customer should expect to wait in line?

Solution: Recall that the expectation of the Unif[a, b] distribution is just (a + b)/2. Hence,
plugging in a = 5 and b = 15we find

E[X] =
5 + 15

2
= 10mins

(c) Given that the customer has already waited for 7 minutes but hasn’t been served yet, what is the

probability that they end up waiting for more than 10 minutes?

Solution: We seekP(X > 10 | X > 7). By the definition of conditional probability,

P(X > 10 | X > 7) =
P(X > 10 , X > 7)

P(X > 7)

Note that {X > 10} ⊆ {X > 7}; that is, if the customer haswaited formore than 10minutes

they most certainly have waited for more than 7 minutes. Hence,

P(X > 10 , X > 7) = P(X > 10)

and so

P(X > 10 | X > 7) =
P(X > 10)

P(X > 7)
=

ş15
10

1
10 dx

ş15
7

1
10 dx

=

(
5
10

)(
8
10

) =
5

8
= 62.5%

2. Luna the Golden Retriever has buried a bone somewhere in the backyard. Unfortunately, she can’t

quite remember where she buried it! As such, she keepds digging holes in the hopes of finding her
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bone - once she finds her bone, she stops digging holes. Suppose each hole Luna digs has a 25% chance

of containing her bone, independently of all other holes.

(a) IfX denotes the total number of holes Luna digs (including the final successful hole) before stop-

ping, what distribution doesX follow? Include both a distribution name aswell as any/all relevant

parameter(s).

Solution: SinceX counts the total number of trials before the first success (where “success”

in this problem is digging a hole that contains the bone), we knowX will follow a Geometric

distribution. Specifically, becauseX is counting the total number of trialswe know thatX will

gollow a Geometric distribution on {1, 2, · · · }. The parameter of the Geometric distribution

is the probability of success, which in this problem is stated to be p = 0.25. Hence,

X ∼ Geom(0.25) on {1, 2, · · · }

(b) What is the probability that Luna has to dig 20 or more holes before finding her bone?

Solution: By our work to part (a), we have that the PMF ofX is given by

pX(x) = (1− 0.25)x−1(0.25) = (0.25) · (0.75)x−1

Hence,

P(X ≥ 20) =

∞∑
x=20

pX(x) =

∞∑
x=20

(0.25) · (0.75)x−1 =
0.25

0.75
·

∞∑
x=20

(0.75)x

=
1

3
·
(
3
4

)20(
1
4

) =
1

3
· 3

20

420
· 4 =

(
3

4

)19

≈ 0.4228%

where we have utilized the formula for an infinite geometric series:

∞∑
k=a

rk =
ra

1− r
, provided |r| < 1

(c) What is the probability that Luna has to dig 19 or fewer holes before finding her bone?

Solution: Note that sinceX only admits positive integers in its support,

P(X ≤ 19) = 1− P(X ≥ 20) = 1−
(
3

4

)19

≈ 99.5772%

3. LetX be a random variable, and let a, b ∈ R be deterministic constants. Use first principles to prove

that expectations are linear; that is, E[aX + b] = aE[X] + b. As a hint: consider the discrete and

continuous cases separately, and start each case by applying the LOTUS and leveraging linearity of

sums and expectations. (You may assume thatX is not mixed.)
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Solution: First we consider the discrete case: letX have probability mass function (p.m.f.) given

by pX(k), so that we have

E[aX + b] =
∑
k

(ak + b) · pX(k)

= a

(∑
k

k · pX(k)

)
︸ ︷︷ ︸

:=E[X]

+b

(∑
k

pX(k)

)
︸ ︷︷ ︸

=1

= aE[X] + b

Similarly, ifX is continuous with probability density function (p.d.f.) given by fX(x), then

E[aX + b] =

ż ∞

−∞
(ax+ b) · fX(x) dx

= a

(
ż ∞

−∞
xfX(x) dx

)
︸ ︷︷ ︸

:=E[X]

+b

(
ż ∞

−∞
fX(x) dx

)
︸ ︷︷ ︸

=1

= aE[X] + b

4. The Celestial Toymaker1 has decided to play a gamewithme. On a table, he lines up an infinite number

of boxes (he is the god of games, after all). With probability (1/2)i he selects box number i [where
i = 1, 2, 3, · · · ]. Inside box number i there are 3i marbles, one of which is red and the remainder of

which are blue. So, for example, box 1 is selected with probability (1/2), and contains 1 red marble and

2 blue marbles; box 2 is selected with probability (1/4), and contains 1 red marble and 8 blue marbles,

etc. The Toymaker selects a box, and then draws a marble.

(a) What is the probability that the Toymaker selects a red marble?

Solution: LetBi denote the event that box i was chosen, and letR denote the event that a

red marble was chosen. From the problem statement, we have that

P(Bi) =

(
1

2

)i

; P(R | Bi) =
1

3i

We seekP(R); using the Law of Total Probability, we compute this as

P(R) =
∞∑
i=1

P(R | Bi) · P(Bi)

=

∞∑
i=1

(
1

3i

)
·
(
1

2

)i

=

∞∑
i=1

(
1

6

)i

=
(16)

1− 1
6

=
1

6
· 6
5
=

1

5

1If you’re curious, this is a character from the British Sci-Fi teleision show Doctor Who.
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(b) Given that the Toymaker selected a red marble, what is the problem that he drew from box 4?

Solution: Using our notation from part (a), we seek P(B4 | R). By Bayes’ Rule, we compute

this as

P(B4 | R) =
P(R | B4) · P(B4)

P(R)

=

(
1
34

)
·
(

1
24

)(
1
5

) =
5

1296
≈ 3.856× 10−3

5. Consider a sequence {Xi}ni=1 of i.i.d. random variables with common mean µ and common variance

σ2. Define

Xn :=
1

n

n∑
i=1

Xi

to be the sample mean. Compute Corr(X1, Xn), the correlation between X1 and the sample mean.

Hint: Bilinearity.

Solution: By the definition of correlation,

Corr(X1, Xn) =
Cov(X1, Xn)

SD(X1)SD(Xn)

The denominator is relatively simple to compute: we know SD(X1) = σ, and from a previously-

derived result (from PSTAT 120A) we know SD(Xn) = σ/
√
n. As such, let’s focus on the numera-

tor:

Cov(X1, Xn) = Cov

(
X1 ,

1

n

n∑
i=1

Xi

)
=

n∑
i=1

1

n
Cov(X1, Xi)

Since we are assuming theXi’s are i.i.d., we know that Cov(X1, Xi) = 0whenever i 6= 1. Further-
more, Cov(X1, X1) = Var(X1) = σ2; hence,

Cov(X1, Xn) =
1

n

n∑
i=1

σ21{i=1} =
σ2

n

Therefore, putting everything together,

Corr(X1, Xn) =
Cov(X1, Xn)

SD(X1)SD(Xn)
=

(
��σ2

n

)
(�σ ) ·

(
�σ√
n

) =

√
n

n
=

√
1

n
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6. Let (X,Y ) ∼ fX,Y . Prove that

E[X] =

żż

R2

xfX,Y (x, y) dA

Hint: Iterate the integral on the RHS, leverage the relationship between marginal densities and joint

densities, and finally recognize the definition ofE[X].

Solution:

żż

R2

xfX,Y (x, y) dA =

ż

R

ż

R

xfX,Y (x, y) dy dx

=

ż

R

x

(
ż

R

fX,Y (x, y) dy

)
dx︸ ︷︷ ︸

=fX(x)

=

ż

R

xfX(x) dx =: E[X]

7. Let (X,Y ) ∼ fX,Y where

fX,Y (x, y) = k(1− y) · 1{0≤x≤y≤1}

(a) Find the value of k that ensures this is a valid joint density function.

Solution: Nonnegativity is fairly trivial; for every (x, y) ∈ {(x, y) ∈ R : 0 ≤ x ≤ y ≤ 1} we
know that y ∈ [0, 1] and so (1 − y) ≥ 0. So, all we need for nonnegativity to hold is for k to

be positive.

To find the specific value of k, we recall that fX,Y (x, y) must integrate to unity. Therefore,

we start off by computing
żż

R2

(1− y) · 1{0≤x≤y≤1} dA

Let’s sketch the support:

x

y
y = x

1

1

This allows us to compute

żż

R2

k(1− y) · 1{0≤x≤y≤1} dA =

ż 1

0

ż y

0
(1− y) dx dy

=

ż 1

0
y(1− y) dy =

ż 1

0
(y − y2) dy =

1

2
− 1

3
=

1

6

Hence, in order for the density to integrate to unity, we should take k = 6 .
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(b) ComputeP(X ≤ 3/4 , Y ≥ 1/2).

Solution: We find the desired probability by computing

P(X ≤ 3/4 , Y ≥ 1/2) =

żż

R
6(1− y) dA

where

R := {(x, y) ∈ R2 : x ≤ 3/4 , y ≥ 1/2 , 0 ≤ x ≤ y ≤ 1}

Sketching this region yields:

x

y
y = x

1

1

3/4

1/2

Whichever order of integration we pick, we need to split the integral into two. As such, let’s

(somewhat arbitrarily) use the order dx dy:

P(X ≤ 3/4 , Y ≥ 1/2) =

ż 3/4

1/2

ż y

0
6(1− y) dx dy +

ż 1

3/4

ż 3/4

0
6(1− y) dx dy

ż 3/4

1/2

ż y

0
6(1− y) dx dy = 6

ż 3/4

1/2
(y − y2) dy = 6

[
1

2

(
9

16
− 1

4

)
− 1

3

(
27

64
− 1

8

)]
=

11

32
ż 1

3/4

ż 3/4

0
6(1− y) dx dy = 6 · 3

4
·
ż 1

3/4
(1− y) dy =

9

2
·
[
1

4
− 1

2

(
1− 9

16

)]
=

9

64

P(X ≤ 3/4 , Y ≥ 1/2) =
11

32
+

9

64
=

31

64

8. LetX ∼ Unif[a, b].

(a) Show thatX has MGF given by

MX(t) =

{
etb−eta

t(b−a) if t 6= 0

1 if t = 0

Be careful with the cases you consider!

Solution: We know thatX has density given by

fX(x) =
1

b− a
· 1{x∈[a,b]}

Thus, by the definition of MGFs (coupled with the LOTUS),

MX(t) := E[etX ] =

ż ∞

−∞
etxfX(x) dx
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First note: if t = 0, we have

MX(0) =

ż ∞

−∞
e0fX(x) dx =

ż ∞

−∞
fX(x) dx = 1

If t 6= 0, then

MX(t) =

ż ∞

−∞
etxfX(x) dx =

ż b

a
etx · 1

b− a
dx =

etb − eta

t(b− a)

Hence, putting everything together,

MX(t) =

{
etb−eta

t(b−a) if t 6= 0

1 if t = 0

(b) Is the above MGF continuous at t = 0? (Recall that this question is important as a lot of our MGF-

related results assume continuity in an interval containing t = 0!)

Solution: The question really boils down to whether limt→0MX(t) = 1 or not. First note

that plugging in t = 0 to the formula

etb − eta

t(b− a)

yields an indeterminate form of 0/0. As such, we should apply L’Hospital’s rule:

lim
t→0

etb − eta

t(b− a)
= lim

t→0

d
dt [e

tb − eta]
d
dt [t(b− a)]

= lim
t→0

betb − aeta

b− a
=

b− a

b− a
= 1

Hence, we have

lim
t→0

MX(t) = 1 = MX(1)

meaning the MGF is continuous at t = 0.

(c) Derive a simple closed-form expression for

d

dtn

∣∣∣∣
t=0

[
etb − eta

t

]
where the notation d

dtn |t=0 means “the nth derivative, evaluated at t = 0.”

Solution: Though we could try and “brute-force” this by taking derivatives and hoping to see

a pattern, let’s see if we can be a bit more clever. Since we have established continuity of the

MGF at t = 0, we can now invoke the fact that

M
(n)
X (0) = E[Xn]

This means
d

dtn

∣∣∣∣
t=0

[
etb − eta

t(b− a)

]
= E[Xn]
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By the LOTUS, we can obtain another formula forE[Xn]:

E[Xn] =

ż b

a
xn

1

b− a
dx =

bn+1 − an+1

(n+ 1)(b− a)

Therefore, we have

d

dtn

∣∣∣∣
t=0

[
etb − eta

t(b− a)

]
=

bn+1 − an+1

(n+ 1)(b− a)

Multiplying both sides by (b− a) yields

d

dtn

∣∣∣∣
t=0

[
etb − eta

t

]
=

bn+1 − an+1

n+ 1
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