QUIZ 03

PSTAT 120B: Mathematical Statistics, I

Summer Session A, 2024 with Instructor: Ethan P. Marzban

ur Information				
Your Name:				
(Firs	st and Last)			
Your NetID:				
(NO	T Perm Number)			
Your Section: (Circle One)	2pm (Hyuk-Jean)	3pm (Hyuk-Jean)	4pm (Minwoo)	5pm (Minwoo)

Instructions

- PLEASE DO NOT REMOVE ANY PAGES FROM THIS QUIZ.
- You have **20 minutes** to complete this quiz.
- The use of **calculators** is permitted, but the use of any other aids (including, but not limited to, notes, phones, laptops, etc.) is prohibited.
- Ensure you show **all your work**; correct answers with no supporting justification will not receive full credit.
- Kindly note that any instances of academic misconduct (including, but not limited to: unauthorized collaboration, or the use of unauthorized resources) will be dealt with in the strictest manner possible.
- Please refrain from discussing the contents of this quiz with **ANYONE**, until given the all-clear by the Instructor.
- Good Luck!

This quiz contains 15 points in total

The Quiz Begins on the Next Page

Problem 1. Let $Y_1,\cdots,Y_n \overset{\text{i.i.d.}}{\sim} f(y;\theta)$ where

$$f(y;\theta) = \frac{3}{2\theta^3} \cdot y^2 \cdot \mathbb{1}_{\{-\theta \le y \le \theta\}}$$

and $\theta > 1$ is an unknown parameter.

(a) (4 points) Derive an expression for $\widehat{\theta}_{MM}$, the method of moments estimator for θ .

Solution: First note that

$$\mathbb{E}[Y_i] = \int_{-\theta}^{\theta} \frac{3}{2\theta^3} y^3 \, \mathrm{d}y = 0$$

Hence, we need the second moment:

$$\mathbb{E}[Y_i^2] = \int_{-\theta}^\theta \frac{3}{2\theta^3} y^4 \, \mathrm{d}y = \frac{3}{2\theta^3} \cdot \frac{1}{5} (\theta^5 + \theta^5) = \frac{3}{5} \theta^2$$

Therefore, $\widehat{\theta}_{\mathsf{MM}}$ must satisfy

$$\frac{3}{5}\widehat{\theta}_{\mathrm{MM}}^2 = M_{2,n} \implies \widehat{\theta}_{\mathrm{MM}} = \sqrt{\frac{5}{3}M_{2,n}} = \sqrt{\frac{5}{3n}\sum_{i=1}^n Y_i^2}$$

(b) (4 points) Suppose that, for a given sample \vec{y} from this distribution, we find that the maximum likelihood estimate for θ is given by 1.98. What is the maximum likelihood estimate of $\mathbb{P}(Y_1 \geq 1)$? You do **not** need to simplify your answer, but you should justify your logic clearly.

Solution: First note that

$$\mathbb{P}(Y_1 > 1) = \int_1^{\theta} \frac{3}{2\theta^3} y^2 \, \mathrm{d}y = \frac{3}{2\theta^3} \cdot \frac{1}{3} (\theta^3 - 1) = \frac{1}{2} - \frac{1}{2\theta^3}$$

By the **equivariance property** of the maximum likelihood estimator,

$$\widehat{\mathbb{P}(Y_1 \geq 1)_{\mathsf{MLE}}} = \left(\widehat{\frac{1}{2} - \frac{1}{2\theta^3}} \right)_{\mathsf{MLE}} = \frac{1}{2} - \frac{1}{2\widehat{\theta}_{\mathsf{MLE}}^3}$$

meaning our maximum likelihood estimate for $\mathbb{P}(Y_1 > 1)$ is given by

$$\frac{1}{2} - \frac{1}{2(1.98)^3}$$

QUIZ CONTINUES ON NEXT PAGE

Problem 2. (7 points) The wait time (in minutes) of a randomly-selected customer at the Goleta DMV (Department of Motor Vehicles) follows a Gamma $(3,\theta)$ distribution for some unknown $\theta>0$. Let $\vec{Y}:=\{Y_i\}_{i=1}^n$ denote the wait times (in minutes) of an i.i.d. sample of n individuals (where n>1), selected from the Goleta DMV.

Derive an expression for $\widehat{\theta}_{\mathsf{MLE}}$, the maximum likelihood estimator for θ . Show all your work!

Solution: We start by finding the likelihood:

$$\begin{split} \mathcal{L}_{\vec{\boldsymbol{Y}}}(\theta) &= \prod_{i=1}^n (f_Y;\theta) = \prod_{i=1}^n \left[\frac{1}{2\theta^3} Y_i^2 e^{-Y_i/\theta} \cdot \mathbb{1}_{\{Y_i \geq 0\}} \right] \\ &= \left(\frac{1}{2} \right)^n \cdot (\theta)^{-3n} \cdot \prod_{i=1}^n (Y_i^2) \cdot \exp \left\{ -\frac{1}{\theta} \sum_{i=1}^n Y_i \right\} \cdot \prod_{i=1}^n \mathbb{1}_{\{Y_i \geq 0\}} \end{split}$$

The log-likelihood is therefore given by

$$\ell_{\vec{Y}}(\theta) = \ln \mathcal{L}_{\vec{Y}}(\theta) = -3n \ln(\theta) + \sum_{i=1}^n \ln(Y_i^2) - \frac{1}{\theta} \sum_{i=1}^n Y_i + \sum_{i=1}^n \ln \mathbbm{1}_{\{Y_i \geq 0\}}$$

Taking the first derivative yields

$$\frac{\partial}{\partial \theta^2} \ell_{\vec{Y}}(\theta) = -\frac{3n}{\theta} + \frac{1}{\theta^2} \sum_{i=1}^n Y_i$$

which means

$$-\frac{3n}{\widehat{\theta}_{\mathsf{MLE}}} + \frac{1}{\widehat{\theta}_{\mathsf{MLE}}^2} \sum_{i=1}^{n} Y_i = 0$$

Solving for $\widehat{\theta}_{\mathsf{MLE}}$ yields

$$\widehat{\theta}_{\mathrm{MLE}} = \frac{1}{3n} \sum_{i=1}^{n} Y_i = \frac{\overline{Y}_n}{3}$$

END OF QUIZ

Selected Discrete Distributions

Distribution	PMF	Expec./Var.	MGF
$X \sim \mathrm{Bin}(n,p)$	$p_X(k) = \binom{n}{k} p^k (1-p)^{n-k},$ $k \in \{0, \dots, n\}$	$\mathbb{E}[X] = np$ $\operatorname{Var}(X) = np(1-p)$	$M_X(t) = (1 - p + pe^t)^n$
$X \sim Geom(p)$	$p_X(k)=p(1-p)^{k-1}$, $k\in\{1,2,\cdots\}$	$\mathbb{E}[X] = \frac{1}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{pe^t}{1 - (1-p)e^t},$ $t < -\ln(1-p)$
$X \sim Geom(p)$	$p_X(k) = p(1-p)^k$, $k \in \{0, 1, \cdots\}$	$\mathbb{E}[X] = \frac{1-p}{p}$ $\operatorname{Var}(X) = \frac{1-p}{p^2}$	$M_X(t) = \frac{p}{1 - (1 - p)e^t},$ $t < -\ln(1 - p)$
$X \sim NegBin(r,p)$	$p_X(k) = {\binom{k-1}{r-1}} p^r (1-p)^{k-r}, k \in \{r, r+1, \dots\}$	$\mathbb{E}[X] = \frac{r}{p}$ $\operatorname{Var}(X) = \frac{r(1-p)}{p^2}$	$M_X(t) = \left[\frac{pe^t}{1 - (1 - p)e^t}\right]^r,$ $t < -\ln(1 - p)$
$X \sim \operatorname{Pois}(\lambda)$	$p_X(k) = e^{-\lambda} \cdot \frac{\lambda^k}{k!},$ $k \in \{0, 1, \dots\}$	$\mathbb{E}[X] = \lambda \\ \operatorname{Var}(X) = \lambda$	$M_X(t) = \exp\left\{\lambda(e^t - 1) ight\}$

Selected Continuous Distributions

Distribution	PDF	Expec./Var.	MGF
$X \sim Unif[a,b]$	$f_X(x) = \frac{1}{b-a} \cdot \mathbb{1}_{\{x \in [a,b]\}}$	$\mathbb{E}[X] = \frac{a+b}{2}$ $\operatorname{Var}(X) = \frac{(b-a)^2}{12}$	$M_X(t) = \begin{cases} \frac{e^{tb} - e^{ta}}{t(b-a)} & \text{if } t \neq 0\\ 1 & \text{if } t = 0 \end{cases}$
$X \sim \operatorname{Exp}(\beta)$	$f_X(x) = \frac{1}{\beta} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \beta \\ \operatorname{Var}(X) = \beta^2$	$M_X(t) = (1 - \beta t)^{-1}, \ t < 1/\beta$
$X \sim \operatorname{Gamma}(\alpha,\beta)$	$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}$	$\mathbb{E}[X] = \alpha\beta$ $\operatorname{Var}(X) = \alpha\beta^2$	$M_X(t) = (1 - \beta t)^{-\alpha}, \ t < 1/\beta$
$X \sim \mathcal{N}(\mu, \sigma^2)$	$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$	$\mathbb{E}[X] = \mu \\ \operatorname{Var}(X) = \sigma^2$	$M_X(t) = \exp\left\{\mu t + rac{\sigma^2}{2}t ight\}$

Calculus Results

• Product Rule:
$$rac{\mathsf{d}}{\mathsf{d}x}\left[f(x)g(x)
ight] = f'(x)g(x) + f(x)g'(x)$$

• Power Rule:
$$\frac{\mathrm{d}}{\mathrm{d}x}(x^n) = nx^{n-1}$$

- Gamma Function:
$$\Gamma(r) := \int_0^\infty t^{r-1} e^{-t} \, \mathrm{d}t$$
 if $r>0$

• Product Rule:
$$\frac{\mathsf{d}}{\mathsf{d}x}\left[f(x)g(x)\right] = f'(x)g(x) + f(x)g'(x) \qquad \quad \bullet \text{ Quotient Rule: } \frac{\mathsf{d}}{\mathsf{d}x}\left[\frac{f(x)}{g(x)}\right] = \frac{f'(x)g(x) - f(x)g'(x)}{[g(x)]^2}$$

• Chain Rule:
$$\frac{\mathrm{d}}{\mathrm{d}x}f(g(x))=f'(g(x))\cdot g'(x)$$

- Recursiveness of Gamma Fnt.:
$$\Gamma(r) = (r-1) \cdot \Gamma(r-1)$$

Selected Statistics Results

- Standarization of Normals: If $Y \sim \mathcal{N}(0,1)$, then $Y^2 \sim \chi^2_1$.
- Closure of χ^2 under Sums: Given independent random variables $\{Y_i\}_{i=1}^n$ with $Y_i \sim \chi^2_{\nu_i}$, then

$$(Y_1 + \dots + Y_n) \sim \chi^2_{\nu_1 + \dots + \nu_n}$$

- Closure of Gamma under Scaling: if $Y\sim {\sf Gamma}(\alpha,\beta)$, then $(cY)\sim {\sf Gamma}(\alpha,c\beta)$ for c>0
- Sample Mean: $\overline{Y}_n:=rac{1}{n}\sum_{i=1}^n Y_i$ Sample Variance: $S_n^2:=rac{1}{n-1}\sum_{i=1}^n (Y_i-\overline{Y}_n)^2$

Sample Standard Deviation: $S_n := \sqrt{S_n^2} = \sqrt{\frac{1}{n-1}\sum_{i=1}^n (Y_i - \overline{Y}_n)^2}$

• Modified Standardization Result: Given $Y_1,Y_2,\cdots\stackrel{\text{i.i.d.}}{\sim}\mathcal{N}(\mu,\sigma^2)$,

$$\sqrt{n} \left(\frac{\overline{Y}_n - \mu}{S_n} \right) \sim t_{n-1}$$

- Sampling Distribution of First Order Statistic: $f_{Y_{(1)}} = n[1 - F_Y(y)]^{n-1} f_Y(y)$

Sampling Distribution of ${m n}^{\sf th}$ Order Statistic: $f_{Y_{(n)}}(y) = n[F_Y(y)]^{n-1}f_Y(y)$

- Factorization Theorem: $\mathcal{L}_{\vec{Y}}(\theta) = g(U,\theta) \times h(\vec{Y}) \iff U$ is sufficient for θ .
- Equivariance Property of MLE: $\widehat{\tau(\theta)}_{\mathrm{MLE}} = \tau\left(\widehat{\theta}_{\mathrm{MLE}}\right)$

You may use the remainder of this page for scratch work; please note that nothing written on this page will be graded.