DISCUSSION WORKSHEET 01

PSTAT 120B: Mathematical Statistics, I **Summer Session A, 2024** with Instructor: Ethan P. Marzban

Welcome to our first PSTAT 120B Discussion Section! Discussion worksheets are designed to give you additional practice with material covered in lecture.

Conceptual Review

- (a) What is a **conditional mass/density function**? For what values is it defined?
- (b) What is a **conditional expectation**?
- (c) What are the **Law of Iterated Expectations** and **Law of Total Variance**?
- (d) What is the **Gamma distribution**? Specifically, what is its density function? What are its expectation and variance?

Problem 1: Conditional Distributions/Expectations

Let (X, Y) be a bivariate random vector with joint probability density function (p.d.f.) given by

$$
f_{X,Y}(x,y) = \begin{cases} \lambda y e^{-y(x+\lambda)} & \text{if } x \ge 0, y \ge 0\\ 0 & \text{otherwise} \end{cases}
$$

where $\lambda > 0$ is a fixed constant.

- **a)** Find $f_Y(y)$, the marginal density of Y and use this to identify Y as belonging to a known distribution. **Be sure to include any/all relevant parameter(s)!**
- **b)** Find $f_{X|Y}(x \mid y)$, the density of $(X \mid Y = y)$, and use this to identify $(X \mid Y = y)$ $Y = y$) as belonging to a known distribution. **Be sure to include any/all relevant parameter(s)!**
- **c) Set up but do not evaluate and integral corresponding to** $\mathbb{E}[X]$ **, that only straint: Law of Iterated** involves the marginal density function of Y .

Expectations

Solution:

a) To find the marginal density of Y , we integrate x out of the joint:

$$
f_Y(y) = \int_{-\infty}^{\infty} \lambda y e^{-y(x+\lambda)} \cdot 1\!\!1_{\{x \ge 0\}} \cdot 1\!\!1_{\{y \ge 0\}} \,dx
$$

= $\lambda y e^{-y\lambda} \cdot 1\!\!1_{\{y \ge 0\}} \cdot \int_{0}^{\infty} e^{-xy} \,dx$
= $\lambda y e^{-y\lambda} \cdot 1\!\!1_{\{y \ge 0\}} \cdot \frac{1}{y} = \frac{\lambda e^{-\lambda y} \cdot 1\!\!1_{\{y \ge 0\}}}{\lambda}$

which gives us Y ∼ Exp(1/λ) (recall that, in PSTAT 120B, we use the *mean* of the Exponential distribution as its parameter).

b) We first note that $f_{X|Y}(x \mid y)$ is defined only for y such that $f_Y(y) \geq 0$. From our answer to part (a), we know that $f_Y(y) \ge 0$ only when $y \ge 0$; hence, let us *a priori* set $y > 0$, and compute

$$
f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_Y(y)}
$$

=
$$
\frac{\chi_{ye^{-y(x+\lambda)}} \cdot 1_{\{x \ge 0\}} \cdot 1_{\{y \ge 0\}}}{\chi_{e^{-\lambda y}} \cdot 1_{\{y \ge 0\}}}
$$

=
$$
\frac{ye^{-xy} \cdot e^{-\lambda y}}{e^{-\lambda y}} \cdot 1_{\{x \ge 0\}} = \frac{ye^{-xy} \cdot 1_{\{x \ge 0\}}}{e^{-xy}}
$$

and hence, $(X | Y = y) \sim \text{Exp}(1/y)$.

c) THIS PART WAS NOT COVERED.

Problem 2: The Gamma Distribution

Recall (from lecture) that if $X \sim \mathsf{Gamma}(\alpha, \beta)$, then X has density given by

$$
f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha - 1} e^{-x/\beta} \cdot \mathbb{1}_{\{x \ge 0\}}
$$

where $\Gamma(\alpha)$ denotes the **gamma function**, defined as

$$
\Gamma(r) := \int_0^\infty x^{r-1} e^{-x} \, \mathrm{d}x \, \mathrm{d}r \ge 0
$$

and $\Gamma(0) := 1$.

a) Show that X has MGF (moment generating function) given by

$$
M_X(t) = \begin{cases} (1-\beta t)^{-\alpha} & \text{if } t < 1/\beta \\ \infty & \text{otherwise} \end{cases}
$$

- **b)** Let $Y\sim \chi^2_\nu$. Use your answer to part (a) to derive the MGF $M_Y(t)$ of $Y.$
- **c)** What is another name for the χ^2_2 distribution? Be sure to give the distribution's name and also list out any/all relevant parameter(s)!

Solution:

a)
$$
M_X(t) := \mathbb{E}[e^{tX}] = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx
$$

\n
$$
= \int_{-\infty}^{\infty} e^{tx} \cdot \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} \cdot 1\!\!1_{\{x \ge 0\}} dx
$$
\n
$$
= \frac{1}{\Gamma(\alpha) \beta^{\alpha}} \cdot \int_{0}^{\infty} x^{\alpha-1} e^{-x \left(\frac{1}{\beta} - t\right)} dx
$$

Now, note that this integral will diverge whenever the exponent is negative. Hence, the MGF is finite only when

$$
\frac{1}{\beta} - t > 0 \iff t < 1/\beta
$$

Hence, let us fix a $t < 1/\beta$, and proceed.

$$
M_X(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} x^{\alpha-1} e^{-x(\frac{1}{\beta}-t)} dx
$$

= $\frac{1}{\beta^{\alpha}} \cdot \frac{1}{(\frac{1}{\beta}-t)^{\alpha}} \cdot \int_0^{\infty} \frac{1}{\Gamma(\alpha) \left[\frac{1}{(\frac{1}{\beta}-t)}\right]^{\alpha}} \cdot x^{\alpha-1} e^{-x(\frac{1}{\beta}-t)} dx$

The integrand is now the density of a Gamma $(\alpha, [1/\beta]-t)$ distribution; since we are integrating this density over its entire support, the entire integral must be unity. Hence, for $t < 1/\beta$

$$
M_X(t) = \frac{1}{\beta^{\alpha}} \cdot \frac{1}{\left(\frac{1}{\beta} - t\right)^{\alpha}}
$$

$$
= \frac{1}{\beta^{\alpha}} \cdot \frac{1}{\left(\frac{1 - \beta t}{\beta}\right)^{\alpha}} = \frac{1}{(1 - \beta t)^{\alpha}} = (1 - \beta t)^{-\alpha}
$$

which recovers the desired result.

There is another way to solve the integral: instead of relating the integrand to a Gamma *density*, we can relate the entire integral to a Gamma *function*. Specifically, return to this step:

$$
M_X(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} x^{\alpha-1} e^{-x\left(\frac{1}{\beta} - t\right)} dx
$$

Let's make a u −substitution:

$$
u = x\left(\frac{1}{\beta} - t\right) = x \cdot \left(\frac{1 - \beta t}{\beta}\right)
$$

This gives

$$
x = \left(\frac{\beta}{1 - \beta t}\right)u
$$

and, consequently, d $x=\left(\frac{\beta}{1-\beta t}\right)\, {\sf d} u$ Hence, we obtain

$$
M_X(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} x^{\alpha-1} e^{-x(\frac{1}{\beta}-t)} dx
$$

=
$$
\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \int_0^{\infty} \left[\left(\frac{\beta}{1-\beta t}\right) u \right]^{\alpha-1} e^{-u} \left(\frac{\beta}{1-\beta t}\right) du
$$

=
$$
\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \left(\frac{\beta}{1-\beta t}\right)^{\alpha-1} \cdot \left(\frac{\beta}{1-\beta t}\right) \cdot \int_0^{\infty} u^{\alpha-1} e^{-u} du
$$

The integral is now precisely the definition of $\Gamma(\alpha)$; hence

$$
M_X(t) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \left(\frac{\beta}{1-\beta t}\right)^{\alpha-1} \cdot \left(\frac{\beta}{1-\beta t}\right) \cdot \int_0^{\infty} u^{\alpha-1} e^{-u} du
$$

=
$$
\frac{1}{\Gamma(\alpha)\beta^{\alpha}} \cdot \left(\frac{\beta}{1-\beta t}\right)^{\alpha} \cdot \Gamma(\alpha)
$$

=
$$
\left(\frac{1}{1-\beta t}\right)^{\alpha} = (1-\beta t)^{-\alpha}
$$

just as we had before.

b) Recall that the χ^2_{ν} distribution is equivalent to the Gamma $(\nu/2,2)$ distribution. Hence, we only need to plug $\alpha = \nu/2$ and $\beta = 2$ into our MGF from part (a):

$$
M_Y(t)=\begin{cases} (1-2t)^{-\nu/2} & \text{if } t<1/2\\ \infty & \text{otherwise} \end{cases}
$$

c) Again, the χ^2_ν distribution is equivalent to the Gamma $(\nu/2,2)$ distribution. Hence, the χ^2_2 distribution is equivalent to the Gamma $(1,2)$ distribution which is itself equivalent to the $\overline{\mathsf{Exp}(2)}$ distribution.