DISCUSSION WORKSHEET 06

PSTAT 120B: Mathematical Statistics, I **Summer Session A, 2024** with Instructor: Ethan P. Marzban

Conceptual Review

- (a) What is a **likelihood**? What about a **log-likelihood**?
- (b) How do we obtain a **maximum likelihood estimator** for a parameter? What do we do if the likelihood is nondifferentiable in the parameter of interest?
- (c) What is a **sufficient statistic**? How can the **factorization theorem** help us find a statistic that is sufficient for a given parameter?

Problem 1

Let $Y_1,\cdots,Y_n \stackrel{\textup{i.i.d.}}{\sim}\mathcal{N}(\mu,\sigma^2)$, where both $\mu\in\mathbb{R}$ and $\sigma^2>0$ are unknown parameters.

(a) Derive an expression for $\mathcal{L}_{\vec{\bm{Y}}}(\mu, \sigma^2)$, the likelihood of the sample $\vec{\bm{Y}}.$ Recall that, since our sample is assumed to be i.i.d.,

$$
\mathcal{L}_{\vec{Y}}(\mu, \sigma^2) = \prod_{i=1}^n f_{Y_i}(y_i; \mu, \sigma^2)
$$

(b) Derive an expression for $\ell_{\vec{{\bm Y}}}(\mu, \sigma^2)$, the log-likelihood of the sample $\vec{{\bm Y}}.$ Also compute

 $\frac{\partial}{\partial\mu}\ell_{\vec{{\bm Y}}}(\mu,\sigma^2)$ and $\frac{\partial}{\partial\sigma^2}\ell_{\vec{{\bm Y}}}(\mu,\sigma^2)$

- (c) In the two derivatives you found in part (b), replace all instances of μ with $\widehat{\mu}_{\sf MLE}$, all instances of σ^2 with $\widehat{\sigma^2}_{\sf MLE}$. Set the resulting expressions equal to zero and solve for $\widehat{\mu}_{\sf MLE}$ and $\sigma^2{}_{\sf MLE}.$
- (d) The **equivariance** property of maximum likelihood estimators is as follows: given the MLE $\widehat{\theta}_{\sf MLE}$ for a parameter θ , the MLE of $\tau(\theta)$ [where $\tau(\cdot)$ is an appropriatelybehaved function] is $\tau(\widehat{\theta}_{\mathsf{MLE}})$. For example, the MLE of θ^3 is $(\widehat{\theta}_{\mathsf{MLE}})^3$.

Use the equivariance property and your answer to part (c) to derive an expression for the maximum likelihood estimator of σ, the population *standard deviation*.

Problem 2

Something's gone awry with *GauchoPop*'s newest bottling machine! Specifically, the new soda dispenser doesn't fill each bottle entirely - rather, the proportion Y_i of a randomly-selected bottle that is full of soda follows the distribution with density

$$
f(y; \theta) = \theta y^{\theta - 1} \cdot \mathbb{1}_{\{0 \le y \le 1\}}
$$

where $\theta > 0$ is an unknown parameter. Let Y_1, \cdots, Y_n denote the proportion of fill contained in n randomly-selected *GauchoPop* bottles.

- (a) Find $\widehat{\theta}_{\mathsf{MLF}}$, the maximum likelihood estimator for θ .
- (b) Company regulations requires that any bottles with fewer than 0.8 fill be la- Hint: Use the equivariance beled as "not fit for sale." Let τ denote the true proportion of bottles that end up labeled as "not fit for sale" - find $\hat{\tau}_{MLE}$, the maximum likelihood estimator for τ .

property

Problem 3

Let $Y_1,\cdots,Y_n \stackrel{\textup{i.i.d.}}{\sim} \mathsf{Unif}[\theta,1]$ where $\theta < 1$ is an unknown parameter.

- (a) Find $\widehat{\theta}_{\mathsf{MM}}$, the method of moments estimator for $\theta.$
- (b) Show that the likelihood of the sample \vec{Y} is given by

$$
\mathcal{L}_{\vec{Y}}(\theta) = \left(\frac{1}{1-\theta}\right)^n \cdot \mathbb{1}_{\{\theta \leq Y_{(1)}\}} \cdot \mathbb{1}_{\{Y_{(n)} \leq 1\}}
$$

where $Y_{(1)}$ denotes the first order statistic (sample minimum) and $Y_{(n)}$ denotes the $n^{\sf th}$ order statistic (sample maximum). Justify your logic.

- (c) Find $\widehat{\theta}_{MLE}$, the maximum likelihood estimator for θ .
- (d) Find the exact sampling distribution of $\widehat{\theta}_{MLE}$, and use this to determine whether or not θ_{MLE} is an unbiased estimator for θ .
- (e) Show that $U := Y_{(1)}$, the first order statistic, is a sufficient sufficient statistic for θ .