
DISCUSSIONWORKSHEET 06

PSTAT 120B:Mathematical Statistics, I

Summer Session A, 2024with Instructor: Ethan P. Marzban

Conceptual Review

(a) What is a likelihood? What about a log-likelihood?

(b) How do we obtain a maximum likelihood estimator for a parameter? What

do we do if the likelihood is nondifferentiable in the parameter of interest?

(c) What is a sufficient statistic? How can the factorization theorem help us

find a statistic that is sufficient for a given parameter?

Problem 1

Let Y1, · · · , Yn
i.i.d.∼ N (µ, σ2), where both µ ∈ R and σ2 > 0 are unknown param-

eters.

(a) Derive an expression for L~Y
(µ, σ2), the likelihood of the sample ~Y . Recall

that, since our sample is assumed to be i.i.d.,

L~Y
(µ, σ2) =

n∏
i=1

fYi(yi;µ, σ
2)

Solution:

L~Y
(µ, σ2) =

n∏
i=1

f(Yi;µ, σ
2)

=
n∏

i=1

[
1√
2πσ2

exp

{
− 1

2σ2
(Yi − µ)2

}]

=

(
1

2π

)n/2

· (σ2)−n/2 · exp

{
− 1

2σ2

n∑
i=1

(Yi − µ)2

}

(b) Derive an expression for `~Y (µ, σ2), the log-likelihood of the sample ~Y . Also

compute
∂

∂µ
`~Y (µ, σ2) and

∂

∂σ2
`~Y (µ, σ2)

Solution: Taking the natural logarithm of our answer to part (a), we find

`~Y (µ, σ2) = lnL~Y
(µ, σ)2 = −n

2
ln(2π)− n

2
ln(σ2)− 1

2σ2

n∑
i=1

(Yi − µ)2
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We now take the required partial derivatives:

∂

∂µ
`~Y (µ, σ2) =

1

σ2

n∑
i=1

(Yi − µ)

∂

∂σ2
`~Y (µ, σ2) = −n

2
· 1

σ2
+

1

2(σ2)2

n∑
i=1

(Yi − µ)2

One thing to note: we take derivatives with respect to σ2, not σ. This is because we’re really

thinking of σ2 as a parameter in itself (i.e. the population variance) - so, whenever we take the

derivative with respect to σ2, we treat σ2 as the whole variable, not σ.

(c) In the two derivatives you found in part (b), replace all instances of µ with

µ̂MLE, all instances of σ
2 with σ̂2

MLE. Set the resulting expressions equal to

zero and solve for µ̂MLE and σ̂2
MLE.

Solution: The system of equations we wish to solve is:

1

σ̂2
MLE

n∑
i=1

(Yi − µ̂MLE) = 0

−n

2
· 1

σ̂2
MLE

+
1

2(σ̂2
MLE)2

n∑
i=1

(Yi − µ̂MLE)
2 = 0

Let’s focus on the first equation. Multiplying both sides by σ̂2
MLE, we find:

n∑
i=1

Yi − n · µ̂MLE = 0 =⇒ µ̂MLE =
1

n

n∑
i=1

Yi =: Y n

Substituting this into the second equation and simplifying, we find

1

(σ̂2
MLE)

n∑
i=1

(Yi − Y n)
2 = n =⇒ σ̂2

MLE =
1

n

n∑
i=1

(Yi − Y n)
2

(d) The equivariance property of maximum likelihood estimators is as follows:

given theMLE θ̂MLE for aparameterθ, theMLEof τ(θ) [where τ(·) is anappropriately-
behaved function] is τ(θ̂MLE). For example, the MLE of θ3 is (θ̂MLE)

3.

Use the equivariance property and your answer to part (c) to derive an ex-

pression for the maximum likelihood estimator of σ, the population standard
deviation.
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Solution: Since σ =
√
σ2,

σ̂MLE =

√
(σ̂2

MLE) =

√√√√ 1

n

n∑
i=1

(Yi − Y n)2
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Problem 2

Something’s gone awry with GauchoPop’s newest bottling machine! Specifically,

the new soda dispenser doesn’t fill each bottle entirely - rather, the proportion

Yi of a randomly-selected bottle that is full of soda follows the distribution with

density

f(y; θ) = θyθ−1 · 1{0≤y≤1}

where θ > 0 is an unknown parameter. Let Y1, · · · , Yn denote the proportion of

fill contained in n randomly-selected GauchoPop bottles.

(a) Find θ̂MLE, the maximum likelihood estimator for θ.

Solution:

L~Y
(θ) =

n∏
i=1

f(Yi; θ)] =

n∏
i=1

[
θY θ−1

i · 1{0≤Yi≤1}

]
= θn

(
n∏

i=1

Yi

)θ−1

·
n∏

i=1

1{0≤Yi≤1}

`~Y (θ) = logL~Y
(θ) = n ln(θ) + (θ − 1)

n∑
i=1

ln(Yi) +

n∑
i=1

ln1{0≤Yi≤1}

∂

∂θ
`~Y (θ) =

n

θ
+

n∑
i=1

ln(Yi)

Therefore, θ̂MLE must satisfy

n

θ̂MLE

+

n∑
i=1

ln(Yi) =⇒ θ̂MLE = − n∑n
i=1 ln(Yi)

=

[
1

n

n∑
i=1

ln

(
1

Yi

)]−1

(b) Hint: Use the equivariance

property

Company regulations requires that any bottles with fewer than 0.8 fill be la-
beled as “not fit for sale.” Let τ denote the true proportion of bottles that end
up labeled as “not fit for sale” - find τ̂MLE, the maximum likelihood estimator

for τ .

Solution: Note that

τ := P(Yi < 0.8) =

ż 1

0.8
θyθ−1 dy = (0.8)θ

By the equivariance property of the maximum likelihood estimator,

τ̂MLE = (̂0.8)θMLE = (0.8)(θ̂MLE) =

(
4

5

) n∑n
i=1

ln

(
1
Yi

)

Problem 3

Let Y1, · · · , Yn
i.i.d.∼ Unif[θ, 1]where θ < 1 is an unknown parameter.
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(a) Find θ̂MM, the method of moments estimator for θ.

Solution:

E[Yi] =
θ + 1

2
=⇒ θ̂MM + 1

2
= Y n =⇒ θ̂MM = 2Y n − 1

(b) Show that the likelihood of the sample ~Y is given by

L~Y
(θ) =

(
1

1− θ

)n

· 1{θ≤Y(1)} · 1{Y(n)≤1}

where Y(1) denotes the first order statistic (sample minimum) and Y(n) de-

notes the nth order statistic (sample maximum). Justify your logic.

Solution: We begin by finding the likelihood of the sample ~Y :

L~Y
(θ) =

n∏
i=1

fY (Yi; θ) =
n∏

i=1

[
1

1− θ
· 1{θ≤Yi≤1}

]

=

(
1

1− θ

)n

·
n∏

i=1

1{θ≤Yi} ·
n∏

i=1

1{Yi≤1}

Let’s focus on simplifying the two products of indicators. Both products are nonzero only when

each of the constituent indicators is nonzero. Hence, the first product of indicators is only nonzero

when all of the Yi’s are greater than θ, which occurs when Y(1) ≥ θ. Similarly, the second product

of indicators is nonzero only when all of the Yi’s are less than 1, which occurs when Y(n) ≤ 1.
Hence,

L~Y
(θ) =

(
1

1− θ

)n

· 1{θ≤Y(1)} · 1{Y(n)≤1}

(c) Find θ̂MLE, the maximum likelihood estimator for θ.

Solution: By definition,

θ̂MM = arg max
θ

{
L~Y

(θ)
}

Note thatL~Y
(θ) is nondifferentiable in θ - hence, we cannot simply take the derivative wrt. θ and

set equal to zero. Instead, we must maximize L~Y
(θ) analytically.

First note that, for θ < 1, the function
(

1
1−θ

)n
is an increasing function in θ; hence, it ismaximized

by setting θ to be as large as possible. The indicator1{θ≤Y(1)} essentially restricts θ to be no larger
thanY(1). Hence, putting these two facts together, we see that the likelihood ismaximized atY(1);
i.e.

θ̂MLE = Y(1)

(d) Find theexact samplingdistributionof θ̂MLE, anduse this todeterminewhether

or not θ̂MLE is an unbiased estimator for θ.
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Solution: By our formula for the density of the first order statistic,

fY(1)
(y) = n

[
FY (y)

]n−1 · fY (y)

Since Yi
i.i.d.∼ Unif[θ, 1], we have

FY (y) =


1 if y < θ
1−y
1−θ if θ ≤ y ≤ 1

0 if y ≥ 1

Therefore:

fY(1)
= n

[
FY (y)

]n−1 · fY (y)

= n

(
1− y

1− θ

)n−1

· 1

1− θ
· 1{θ≤y≤1} =

n(1− y)n−1

(1− θ)n
· 1{θ≤y≤1}

Hence,

E[Y(1)] =

ż ∞

−∞
yfY(1)

(y) dy

=
n

(1− θ)n
·
ż 1

θ
y(1− y)n−1 dy

=
n

(1− θ)n
·
ż 1−θ

0
(1− u)un−1

=
n

(1− θ)n
·
[
1

n
(1− θ)n − 1

n+ 1
(1− θ)n+1

]
= 1− n

n+ 1
(1− θ) =

n+ 1− n+ nθ

n+ 1
=

nθ + 1

n+ 1

As this does not equal θ for any finite sample size n, we can conclude that θ̂MLE is a biased esti-

mator for θ.

(e) Show thatU := Y(1), the first order statistic, is a sufficient sufficient statistic

for θ.

Solution: Going back to our likelihood from part (b), we can rearrange terms to see

L~Y
(θ) =

[(
1

1− θ

)n

· 1{θ≤Y(1)}

]
︸ ︷︷ ︸

:=g(Y(1),θ)

×
[
1{Y(n)≤1}

]
︸ ︷︷ ︸

:=h(~Y )

Since the likelihood factors into the product of two functions, one involving only θ and Y(1) and

another involving only ~Y , we can use the factorization theorem to conclude that U := Y(1) is a
sufficient statistic for θ.
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